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In this study, a parametric analysis was carried out to determine the 

velocity distribution of two immiscible incompressible fluids between 

two stationary parallel plates using the Finite Element Method (FEM). 

The overall results from these finite elements were assembled to 

represent the velocity distribution in the entire domain of the stationary 

parallel plates. The results obtained showed that the velocity 

distribution has a parabolic profile with the maximum velocity of 

13.125 m/s at 2.5m from the centre line into the less dense and less 

viscous region of the parallel plates. The fluid due to the no slip 

boundary condition had a velocity of 0 m/s at the walls of the parallel 

plates. The result obtained from the FEM when compared with the 

result obtained from the exact differential equation method showed a 

strong agreement. 
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1. INTRODUCTION 

Champati and Ramana Rao, (2013) reveals that the velocity profile due to the flow of two incompressible immiscible 

liquids occupying equal heights between two parallel plates was first obtained by Bird et al., (1960). This problem 

was further generalized by Kapur and Shukla (1964) to the case of flow of a number of incompressible immiscible 

liquids occupying different heights. The stability analysis of two superposed fluids between parallel planes was 

formulated by Yih (1965) and later extended by Nakaya and Hasegawa (1974) to include the effects of gravity and 

surface tension. Santowski et al., (1969) studied the stability analysis by considering the stratified gas over a liquid 

under the assumption of inviscid and incompressible flow. This assumption was only an approximation which was 

true only when the fluid velocities are low. Rudraiah and Rohini (1975) modified the work of Santowski et al., (1969) 

by considering the superposed flow of a compressible fluid over an incompressible fluid but under the assumption that 

the compressibility of fluid is taken as an isothermal atmosphere where the density changes with height. Ramana Rao 

and Narayana (1981) studied the flow of two incompressible immiscible liquids occupying equal heights between two 
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parallel plates in a rotating system under the action of constant pressure gradient. They also studied the associated 

thermal distribution, assuming equal and different plate temperatures. By immiscible fluids, we mean, superposed 

fluids of different densities and viscosities. Ramana Rao and Narayana (1981) suggested that olive-oil and water can 

be taken as the two immiscible liquids.  

The uniqueness for two immiscible fluids in a one-dimensional porous medium was studied by Baiocchi et al. (1980). 

Champati and Ramana Rao (2013) studied the steady laminar flow of two incompressible immiscible liquids under 

the action of a constant pressure gradient through a channel of circular cross - section, rotating with a uniform angular 

velocity about an axis perpendicular to the channel in saturated porous medium based on Brinkman's Model 

(Brinkman, 1947). Akpobi and Akpobi (2007) used the finite element method to solve a problem on the velocity 

distribution in viscous incompressible fluid using the langrange interpolation function and compared their result with 

the exact differential equation method. Also, Erhunmwun and Oladeinde (2016) used the Finite Element Method 

(FEM) to determine the velocity distribution in a concentric cylindrical annulus. 

In this study, FEM was used to determine the velocity distribution of two incompressible immiscible fluids with 

different densities and viscosities. The advantage of the FEM over other numerical methods is that FEM gives results 

that represent the velocities at different nodes for the whole material under consideration at the same time unlike the 

result from other numerical methods that provide discrete result at a time and needs further iteration to determine the 

velocity values at other points of the two stationary parallel plates. 

2. METHODOLOGY 

Consider the steady laminar flow of two immiscible incompressible fluids in a region between two parallel stationary 

plates under the influence of a pressure gradient. The fluid rates are adjusted such that the lower half of the region is 

filled with Fluid I (the denser and more viscous fluid) and the upper half is filled with Fluid II (the less dense and less 

viscous fluid), as shown in Figure 1.  

 
Figure 1: Velocity profile of two incompressible immiscible fluid 

The governing equations for the two immiscible compressible fluids are:  
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where  and  Velocities of fluid I and fluid 2 respectively

          and  = Viscocity of fluid 1 and fluid 2 respectively

                      = Pressure gradient of the fluids

u u

f

µ µ

=

 

The boundary conditions are: 

( ) ( ) ( ) ( )1 2 1 2=0,     0   and     0 0u b u b u u− = =
      (3) 

The domain of the problem consists of all points between x=0 and x=L i.e. ( )L,0=Ω . The domain was divided into 

a set of line elements, a typical element being of length he and located between two end points A and B of a typical 

element. The collection of such elements is called the finite element mesh of the domain. The reason for dividing the 

domain into finite elements was to represent the geometry of the domain and to approximate the solution over the 

entire domain. 

2.1 Mathematical Analysis 

In the development of the weak form, a linear mesh was assumed and placed over the domain. This was done by 

multiplying Equation 1 by the weighted function (w) and integrating the final equation over the domain. This resulted 

in the mathematical expression in Equation 4. 

0 0
B B
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x x
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x x

w u
dx f wdx wQ wQ

x x
µ

∂ ∂
− − − =
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       (4) 

But xB=xA+he 

Where xA is the initial position of a typical element, xB is the final position of a typical element and he length of a 

typical element. 

Equation 4 is known as the weak form of the governing equation. The weak form requires that the approximation 

chosen for u should be at least linear in x so that there are no terms in Equation 4 that are identically zero. Since the 

primary variable is simply the function itself, the Lagrange family of interpolation functions is admissible. It was 

proposed that u is the approximation over the typical finite element domain by the expression: 

( )
1

n
e e

j j

j

u u xψ
=

=∑  and ( )e

iw xψ=  3,2,1, =ji     (5) 

Where ( )e

iw xψ=  is the trial function  

In Galerkin’s weighted residual method, the weighting functions are chosen to be identical to the trial functions 

(Reddy, 1993).  

Substituting Equation 5 into Equation 4, results in: 
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i i A i B
Q x Q x Qψ ψ= +

        (9) 

Equation 6 is referred to as the finite element-based model while Equation 7 is known as the stiffness matrix and 

Equation 8 is referred to as the flux matrix. Hence, the one-dimensional Lagrange quadratic interpolation function 

becomes: 
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where he= Elemental length 

To evaluate the ijK  matrix, Equations 10-12 were substituted accordingly into Equations 7 and 8 respectively to give 

Equations 13 and 14. 
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Equation 13 represents the generalized form of the stiffness matrix for the entire domain of the fluids between 

stationary parallel plates and Equation 14 represents the generalized form of the flux matrix for the entire domain of 

the fluid between stationary parallel plates. In this work, the domain of the parallel plates was divided into four 

quadratic elements thus: 
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Substituting Equations 15 and 16 Equation 6, results in: 
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Due to balance of internal flux, 
1 1 2 2 2 3 3 3 4 4

2 3 1 2 3 1 2 3 1 2,   ,   ,   ,  ,   ,   Q Q Q Q Q Q Q Q Q Q+ + +  are equal to zero. Introducing 

the boundary conditions stated in Equation 3, Equation 17 reduces to: 
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3. RESULTS AND DISCUSSION 

The data used in this work are given thus: 

0 1 25 ,   0.3,   0.9 . ,   0.1 . ,   
2

e

b
b m f Pa s Pa s hµ µ= = = = =

  
The exact differential equation solution of the problem is given in Equation 19 
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A graph of the velocity profile of the two immiscible incompressible fluids in between the two stationary parallel 

plates is as shown in Figure 2. The graph shows the velocities at different nodes plotted against the length of the 

stationary parallel plates. The graph shows a parabolic relationship between the velocity and the length of the 

stationary parallel plates. It was observed that the velocities at points -5m and 5m which are the boundaries of the 

stationary parallel plates are 0 m/s. This was due to the fact that the no slip boundary condition at the boundaries 

(walls) of the two stationary parallel plates was applied. From Figure 2, between 0 and 5m represents the velocity 

profile for the less viscous and less dense fluid and between 0 and -5m represents the velocity profile for the more 

viscous and denser fluid. It is observed from Figure 2 that at point zero, which is at the point of intersection of the two 

fluids, their velocities are the same with a value of 7.5m/s. From this analysis, the maximum velocity was attained in 

the less dense region with the lowest viscosity of 0.1Pa.s and the maximum velocity attained was 13.125m/s at a point 

half way into the less viscous and less dense region i.e., 2.5m from the centre line. It is worthy to note also that if the 

fluids in between the stationary parallel plates are of the same viscosities of 0.1Pa.s, the maximum velocity of 37.5m/s 

would have been obtained at the zero point (centre line). Also, if the fluids in between the two stationary parallel plates 

are of the same viscosities of 0.9Pa.s, the maximum velocity of 4.167m/s would have been obtained at the zero point 

(centre line). The reason for obtaining the maximum velocity of 13.125m/s at a point half way into the less viscous 

and less dense region i.e., 2.5m from the centre line when the two fluids have different viscosities was that the more 

viscous fluid will tend to cause a dragging effect on the less dense fluid, thereby reducing the velocity while the less 

dense fluid will tend to help the more viscous fluid increase its velocity. 

To verify the accuracy of the results obtained from the Finite Element Method, the same problem was solved using 

the exact differential equation method. The results obtained from the Finite Element Method were compared with the 

results obtained from the exact differential equation method. It was observed from the two methods that their results 

were in good agreement with one another. From the results shown in Table 1, even with just four linear element, a 

very high accuracy was obtained as reflected in the percentage error estimation. The advantage of the FEM over the 

exact differential equation method is that the FEM gives results that represent the velocities at different nodes for the 
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whole material under consideration at the same time unlike the result from the exact differential equation method that 

provide discrete result at a time and needs further iteration to determine the velocity values at other points of the two 

stationary parallel plates. 

 
Figure 2: A graph of velocity against length of plate 

Table 1: Comparison between the Exact Solution and the FEM Solution 

Length (m) 
Velocity (m/s) 

% Error 
FEM Exact 

5.00 0.0000 0.0000 0.0000 

3.75 8.9063 8.9063 1.99E-14 

2.50 13.1250 13.1250 2.71E-14 

1.25 12.6563 12.6563 0.0000 

0.00 7.5000 7.5000 -2.4E-14 

-1.25 6.4063 6.4063 -2.8E-14 

-2.50 4.7917 4.7917 -3.7E-14 

-3.75 2.6563 2.6563 -3.3E-14 

-5.00 0.0000 0.0000 0.0000 

4. CONCLUSION 

The finite element method has been used to obtain the velocity distribution of two immiscible incompressible fluids 

with steady laminar flow. The results obtained from the FEM were compared with the results obtained from the exact 

differential equation method and it was discovered that both results agree. The result obtained shows that the finite 

element method is an efficient and accurate method.  
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