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The few obtainable literatures focusing on the mapping of malaria 

endemicity are highly descriptive in approach. No studies have attempted 

to objectively identify the local strata of the endemicity or long-term 

hotspot and coldspot of malaria in high burden areas. Hence, this study 

analyses the spatial and temporal pattern of falciparum malaria 

endemicity using 20 years of incidence data on a second-level 

administrative boundary of Nigeria. Getis-Ord Gi* hotspot detection 

statistic designed to identify significant hotspot and coldspot was used to 

identify the spatial dynamics of hotspot and coldspot. To detect malaria-

endemic areas and derived the significant endemic temporal cluster 

maps, emerging hotspot analysis and local outlier analysis were carried 

out using an initially generated space-time cube. The result shows that 

there is local heterogeneity in the clustering patterns of the malaria 

incidence rate. Also, a local endemicity map was produced and this 

shows that high endemic malaria strata seem to cluster around the 

Nigeria-Benin Republic border and Nigeria-Cameroon border. This 

suggests that cross border transmission may be taking place over these 

years. The adopted approach in this study is a robust and appropriate 

way of modelling space-time data. In epidemiology, the major challenge 

in intervention deployment, smart resource allocation, surveillance, 

monitoring and evaluation is the ability to locate spatial clusters of 

disease infection. The implication of these results is that they provide the 

springboard for the design of various malaria control and elimination 

strategies and this will serve as a vital tool for informed decision-making 

during interventions and surveillance. 

© 2023 RJEES. All rights reserved. 
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1. INTRODUCTION 

Africa is the most famous malaria-endemic region because of its falciparum malaria burden which has 

become pervasive in many countries of the region (Adetunji et al., 2022). Although, roughly 3.3 billion 
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people accounting for about half of the world’s population in 106 countries are estimated to be affected by 

human malaria. The majority of these incidences occur in Africa countries. For example, of the over 215 

million clinical cases of malaria recorded in 2010, African countries accounted for 81% of such cases. Also, 

655,000 malaria mortality was recorded in 2010, and African countries accounted for 91% of the death cases 

(United State Embassy in Nigeria, 2011). Within the Africa region, there is also a pronounced level of uneven 

prevalence of the disease. Countries in sub-Saharan Africa carry a significant proportion of the global malaria 

burden. The 2017 World Health Organization (WHO) malaria report revealed that 15 countries in sub-

Saharan Africa and India accounted for roughly 80% of the global malaria cases and among these, five 

countries carried almost half of the global cases (WHO, 2018). Concerning mortality, 13 sub-Saharan Africa 

countries account for 90% of the global figure (United State Embassy in Nigeria, 2011).  

Contemporary studies have shown that since after the year 2000 the global burden of falciparum malaria, a 

parasite of the plasmodium genus, is on the decline (Bhatt et al., 2015). A significant decline has also been 

recorded in other endemic countries in sub-Saharan Africa. This decline may be credited to the various 

malaria interventions such as the distribution of insecticide-treated nets (ITN), use of vector control spray, 

rapid diagnostic tests, etc (Bhatt et al., 2015; Weiss et al., 2019). Despite the achieved significant global 

decline for nearly two decades, Nigeria’s cases have remained high and insignificantly dropping even though 

various malaria interventions were implemented. Nigeria seems to be the most falciparum malaria-endemic 

country in the world because it carries about 25% of the global malaria burden (NPC, 2012; WHO, 2018; 

Adetunji et al., 2022; Ogbulafor et al., 2023). 

However, falciparum malaria endemicity in Nigeria is not homogeneous as there may be a significant 

hotspot and coldspot of cases across space and time. Some areas may be consistently low over time, some 

may be consistently high and yet others may manifest fluctuating patterns. Earlier studies have revealed that 

malaria incident level is largely heterogeneous over space (Laguna et al., 2017; Grillet et al., 2010). 

Epidemiologists are interested in identifying both hotspot and coldspot areas of malaria incidence. Hotspot 

areas would provide insight and understanding of nature, the causative environmental factors, and other 

baseline information that may influence the spread of malaria. On the other hand, identifying coldspot areas 

may also provide needed information on the factors influencing such low cases. Overall, information on the 

spatio-temporal clustering pattern at the local level may be useful for identifying a high-risk area for 

prioritizing resource deployment, planning, monitoring, evaluation, surveillance, etc. for effective malaria 

elimination plan at the country-level and driving towards global eradication of the disease.   

Literature review shows that only a handful of studies have been conducted on malaria incidence mapping, 

spatial and temporal modelling of the distribution of cases (Zacarias and Andersson, 2010; Bhatt et al., 2015; 

Shekhar et al., 2017; Weiss et al., 2019). A significant proportion of these studies focused on analyzing the 

factors that influence cases (Laguna et al., 2017; Alegana et al., 2013; Lucas et al., 2020; Adebayo et al., 

2016; Weiss et al., 2015). There are far fewer than adequate studies on malaria endemicity mapping. The 

available literature on the global mapping of malaria endemicity shows that sub-Saharan Africa is a centre 

for falciparum malaria incidence, case mortality and clinical burden and these studies used descriptive 

approach in their analysis (Guerra et al, 2006; Dalrymple, 2015; WHO, 2018; Battle et al., 2019; Weiss et 

al., 2019). A substantial amount of other studies concentrated on predicting the incidence and risk of the 

disease in association with some covariates (Kleinschmidt, 2000; Weiss et al., 2015; Alegana et al., 2016; 

Adebayo et al., 2016; Cohen et al., 2017). Yet no studies have attempted to objectively identify the local 

hotspots and model the level of endemicity of malaria in high burden areas using long temporal span hotspot 

data. There is, however, a justifiable need to understand the spatio-temporal pattern of malaria incidence at 

a local scale. This is because malaria endemicity may strongly be determined by local factors that exist 

within such local ecology. Epidemiologists and public health practitioners have come to realize the 

importance of modelling the local heterogeneity of diseases as this would guide informed decisions and most 

importantly promote local elimination to the global eradication of malaria cases.     

The major objective of this study is to analyse the local spatial and temporal pattern of falciparum malaria 

endemicity using 2 decades of incidence data on a second-level boundary administration geographic 
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information system (GIS) dataset. This was achieved by conducting a spatial statistical computation of 

hotspot and coldspot analysis for each temporal period so that areas with perpetual temporal hotspot would 

be identified. The rest of this paper is divided into Section 2- which describes the study area and data; 3-

which looks at the methodology of the study; Section 4-which present the analysis and results; Section 5-

which discusses the findings and then the conclusion. 

2. METHODOLOGY 

2.1. Study Area and Malaria Datasets 

The study area is Nigeria that is located in West Africa and the sub-Saharan region where falciparum malaria 

has been known to be endemic for several decades. Nigeria is positioned geographically between latitude 

4°9'N to 13°46'N and longitude 3°45'E to 16°54'E (Figure 1). Its area coverage is roughly 910,770 square 

kilometres with an estimated population of 206,139,589 at the mid-year of 2020 and projected to reach 

401,315,000 (almost double) in 2050 (United Nations, Department of Economic and Social Affairs, 

Population Division, 2019). United Nations 2020 ranking placed the country at 7 most populous nation in 

the world containing 2.64 per cent of the world’s total population. There are 36 states and a federal capital 

territory in Nigeria broken down into 774 local government areas (LGAs). The datasets and analysis are 

based on the 774 local administrative units or LGAs (Figure 1). Two major secondary datasets with spatial 

and temporal characteristics were obtained and utilized in this study. The first is temporal data on falciparum 

malaria incidence rate (annual mean) per 1000 persons at a sub-national administrative unit. This dataset 

was downloaded from the malaria atlas project (MAP) site and its temporal period spans from 2000 to 2019 

accounting for two decades. The datasets in spreadsheet format (.csv) are respectively tied to the name of 

the LGAs for all temporal periods. This will facilitate the integration between the spreadsheet data and spatial 

data.  Through country-wide surveillance and compilation, the clinical cases were reported as incidence per 

1000 of the population in a year. These cases were confirmed either by the microscopic or rapid diagnostic 

test (RDT) method. The data was aggregated into LGA spatial boundaries (polygons). The second is the 

spatial boundary dataset in polygon shapefile format which was download from the GADM site 

(www.gadm.org). The dataset was provided at the level-2 administrative unit for the 774 LGAs of 37 states 

of Nigeria.                     

 

 
Figure 1: Study location-Nigeria State and LGA administrative boundaries (State and LGA boundaries are 

shown in black and white respectively) 
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2.2. Hotspot Detection of Falciparum Malaria Incidence 

The spatio-temporal analysis was carried out with Getis-Ord Gi* hotspot detection statistic designed to 

identify statistically significant clusters of high values (hotspot) and low values (coldspot) (Getis and Ord, 

1992). In the process, a series of maps were produced that enabled the visualization of the results of the 

different time steps. There is a 20-time step in the analysis which makes up 20 temporal periods on a year-

to-year basis. This analysis would provide insight into the temporal dynamics and spatial patterning of 

falciparum malaria incidence rate in the study area. The Getis-Ord Gi* hotspot analysis has the capability of 

identifying and also quantifying local patterns of spatial dependence or autocorrection at multiple scales 

thereby detecting significant clusters of high values and clusters of low values in a dataset (Ord & Getis, 

1995; Getis & Ord, 1992). In this case, Getis-Ord Gi* hotspot analysis in its original formulation was used 

to test the occurrence of malaria incidence clustering pattern at the LGA level. The local Gi* hotspot analysis 

formulation by Rogerson (2001) is presented as:  

��
∗ =

∑ ���	
�����
∗

� �̅

��	����
∗ ��

∗��/	����
�/�        (1) 

In this formulation (Equation. 1), ��
∗ is a local association of malaria incidence, � represents the malaria 

cases standard deviation (� values), ���	�� is a weight matrix element which defines the LGA boundary 

relationship between � and � which is measured by the distance 	�� between them and   is the number of 

malaria cases.  
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The formulation for the weight matrix is presented in Equations 2 and 3. The weight of the spatial matrix 

will be equal to 1 if the LGA � has a contiguous distance relationship with LGA � and equal to 0 if otherwise.  

In determining the appropriate parameter for the spatial weight matrix, the fixed distance band method of 

conceptualizing the spatial relationships between the LGAs boundary was applied. The fixed distance band 

method was selected because it is most appropriate for polygon datasets with largely uneven size as in the 

case of the LGA administrative boundaries of the study region (see Figure 1). In the fixed distance band 

method, each LGA feature is analysed within the context of neighbouring LGA features. Neighbouring 

LGAs that fall inside the specified critical distance or distance band receive a weight of 1 and exert influence 

on the computations for the target feature. Neighbouring features outside the critical distance receive a 

weight of 0 and do not influence the target feature's computations.  

To select an appropriate distance band ensuring that every LGA has at least 5 neighbours, the incremental 

spatial autocorrelation statistics (Global Moran’s I) was computed using the 2 decades of malaria incidence 

rate data in the 774 LGAs. In this way, the data is allowed to point to the best distance band by providing a 

Z-score for the entire study area. The incremental spatial autocorrelation revealed 10 bands and 1 significant 

peak. The incremental spatial autocorrelation statistics result reveals that the best distance band for the 

malaria incidence dataset is 139,677.38 meters with a significant Z-score peak of 68.5 (Figure 2). Hence, the 

selected distance band for the hotspot analysis is 139,677.38 meters.  

2.3. Space-time Analysis of Falciparum Malaria Incidence 

To identify falciparum malaria local endemic areas and derived the statistically significant endemic cluster 

maps through time, emerging hotspot analysis and local outlier analysis were computed. Emerging hotspot 

and local outlier analyses are both spatial statistical tools found in the space-time pattern mining 

geoprocessing toolbox of ArcGIS pro.  
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Figure 2: Incremental spatial autocorrelation for distance band selection 

The emerging hotspot analysis is an extension of the Getis-Ord Gi* hotspot technique which incorporates 

the time factor into the initial formulation. It is expected that this technique would detect trends in the 

clustering of malaria incidence values in a space-time 3D cube that is created using xyz dimensions of the 

malaria datasets where the x and y represent the geographic location of the LGA polygon and the z represent 

the temporal or time step of the dataset. On the other hand, local outlier analysis is an implementation of the 

Local Moran’s I statistic (Anselin, 1995). The local Moran’s I in its original formulation have been used 

severally in health geography to model disease incidences and patterning, specifically to detect outliers and 

clusters (Goovaerts and Jacquez, 2005; Sugumaran et al., 2009; Imdad, et al., 2021). In this study, local 

outlier analysis (local Moran’s I) was computed to identify statistically significant cluster outliers within the 

space-time context and such cluster was classified as malaria-endemic areas. The local outlier analysis like 

the emerging hotspot analysis depends on the space-time 3D cube of malaria incidence rate for its 

computation. 

The space-time 3D cube is a vital component of the spatio-temporal analysis for malaria incidence rate 

because it would aggregate the set of LGA polygon into bins at the centre and then the malaria incidence 

data are further aggregated into the respective space-time bins. Each of the created bins in the space-time 

cube must have a location identification number, time step data and the incidence or event data. The bins 

that are associated with the same geographic location shares the same location identification number and 

jointly present time-series data. Likewise, bins with the same time step interval share the same time step 

identification number and jointly form a time slice. The malaria incidence values recorded on a particular 

bin reflects the incidence rate that occurred at the associated geographic location within the connected time 

step interval.  

To compute the emerging hotspot and local outlier analyses, the space-time 3D cube was entered into each 

of the analyses as the baseline data. In the emerging hotspot analysis, the expected output after a successful 

computation is z-score, p-value, and hotspot bin classification. The resultant hotspot and coldspot trends are 

further analyzed using the Mann-Kendall trend test statistic and present a trend z-score and the corresponding 

p-value for each geographic location and the hotspot z-score and p-value for each bin.                           

3. RESULTS AND DISCUSSION 

3.1. Falciparum Malaria Incidence Hotspot and Coldspot 

Using the Getis-Ord hotspot analysis clusters of significant malaria incidence hotspot and coldspot were 

empirically identified and mapped. The full malaria dataset for the 774 LGAs with 20 temporal periods 

(2000-2019) was used for the analysis. Hotspot analysis produced 20 maps showing malaria cluster dynamics 

and patterns (Figure 3). Statistically significant hotspot and coldspot are LGAs that returned a p-value equal 

to or greater than 0.05 (95%) level of confidence. The hotspot that returned a 95% confidence level is 

described as being a hotspot 95% of the time. The same interpretation is applied to the coldspot category. 
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The result reveals that there are local heterogeneity and fluctuation in the clustering patterns of malaria 

incidence rate in Nigeria. A noteworthy observation from a deep visual inspection of the maps in Figure 3 

shows that there may be a 3-year total change in the pattern and directional movement of hotspots and 

coldspots in the region. It shows that a new clustering pattern of hotspot and coldspot emerges within a 3-

year temporal stage.  

For example, the hotspot for the first 3-year temporal stage (2000-2002) seems to be consistent in pattern 

with slight yearly consecutive changes which involves the gradual growth of the hotspot and coldspot 

clusters. In this temporal stage, the falciparum malaria incidence hotspots cluster is largely concentrated in 

the north-central and western part of the country. This is followed by an isolated smaller cluster in the lower 

south-eastern part of the country. At the end of the first temporal stage, malaria hotspots had fully spread 

across the north-central region of the country and the lower south-east cluster shows a gradual growth 

towards the eastern part of the north-central cluster. On the other hand, the malaria coldspot cluster shows 

sectionalisation into 3 clusters (2 clusters at the upper north-east and north-west edges of the region and a 

cluster at the south-west part of the country) and a gradual aggregation of the upper north clusters.     

The second temporal stage (2003-2005) marks the complete aggregation of clusters. The north-central 

hotspot completely merged with the lower south-east cluster. This stage presented a large cluster of malaria 

hotspots by LGA which spread across the north-central region and covers the greater part of the south-east 

region of the country. The same pattern is observed from the coldspot cluster. The upper north coldspot 

clusters completely merged forming a linear pattern on the upper northern edge. While the north coldspot 

cluster was growing, the south-west coldspot cluster was attenuating. The general pattern in this stage is a 

reduction in malaria incidence rate in the upper north and growth of hotspot clusters down south into the 

initial malaria coldspot. 

In the third temporal stage (2006-2008), hotspots in the north-east and south-east began to shrink and started 

towards the north-west. In the same way, the initial north-west coldspot cluster began to diminish. The north-

west hotspot clustering pattern in the fourth temporal stage (2009-2011) becomes intense as it extends toward 

the north-east along the northern edge of the country. In these LGAs, coldspot clusters were within 3 years 

converted to a hotspot. This indicates that there was an outbreak of falciparum malaria in the north-west 

LGAs at this temporal stage. Also, the south-east hotspot clusters continue to shrink while the coldspot 

clusters in the south-south and south-west continue to increase. The fifth temporal stage (2012-2014) show 

a general decline in hotspots and coldspot areas. The hotspot was concentrated in the north-west and the 

hotspot cluster began to resurface in the north-east and spread towards the south-east region of the country. 

Coldspot declined in the north and increased proportionately in the south specifically in the south-west 

LGAs. 

The sixth temporal stage (2015-2017) shows a drastic reduction of the hotspot in the north-central cluster by 

outright conversion to coldspot, indicating a substantive attack (using perhaps an effective intervention 

method) on the initial malaria outbreak that emerged in the fourth temporal stage. This was confirmed by 

the work Ozodiegwu et al. (2023) which highlighted how the ITN intervention contributed to reduction of 

cases at this period. At this time, the hotspot clusters in the north-east region have extended further southward 

and several initial coldspot LGAs in the south-east were converted to a hotspot. In the same manner, south-

west coldspot cluster became a hotspot. This means that in this temporal stage, malaria outbreaks occurred 

simultaneously in the north-west, south-west, north-east and south-east regions forming a strip along the 

Nigeria-Benin and Nigeria-Cameroon borders. This same pattern continued into the seventh temporal stage 

(2018-2019). The south-south coldspot cluster began to grow thin as the hotspot clusters from the south-west 

and south-east started to engulf the initial coldspot cluster. This observed boundary fluctuation and incidence 

dynamics have been reported by Grillet et al. (2010). Also, the temporal dynamic most likely is caused by 

series of intervention in various regions and the attitudes inherent in utilization (Makinde et al., 2021; 

Ozodiegwu, et al., 2023). 
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Figure 3: Local hotspot and coldspot of falciparum malaria incidence rate across Nigeria LGAs from 2000-2019 

3.2. Falciparum Malaria Endemicity 

The results of the spatio-temporal analysis for malaria local endemicity are shown in Figure 4, 5 and 6. 

Figure 4 reveals that from 2000 to 2019 malaria incidence rate had generally been on the decline. The rate 

of decline is quite slow and such observed decline started in 2008 perhaps due to the various intervention 

that became available such as the use of ITN and indoor spray. Figure 5 is the result of the emerging hotspots 

computed from the space-time cube to determine significant changes over time.  

Several hotspots and coldspots patterns were revealed, for example, intensifying hotspot, consecutive 

hotspot, persistent hotspot, oscillating hotspot and historical hotspot occurred in the LGAs located in the 

western margin of the country along the Nigeria-Benin republic border. The intensifying hotspot that 

occurred in Kaiama LGA in Kwara State, indicate that Kaiama LGA has been significantly hot at least 90% 

of the time over the last 20 years (i.e. malaria cases in this LGA is significantly increasing). Also, the 

consecutive hotspot that occurred in 14 LGAs is an indication that these LGAs significantly manifest malaria 

hotspot year after year over the last 2 decades. Persistent hotspot occurred in 8 LGAs and this pattern of 

hotspot indicates that about 90% of the time over the 20 years, hotspot occurred here persistently. Oscillating 

hotspot occurred in 13 LGAs and this means that in these LGAs, there is an interchanging pattern from hot 
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to coldspot and vice versa. There are 2 LGAs that manifested historical hotspot pattern and this pattern 

indicates that these LGAs initially were a significant hotspot, though it has lost this characteristic, there is a 

chance for such pattern to reemerge. 

 
Figure 4: The temporal trend of malaria incidence rate (annual mean) from 2000-2019 in Nigeria 

 
Figure 5: Emerging falciparum malaria hotspot and coldspot from 2000-2019 

Four major coldspot patterns occurred in Figure 5. They occurred in clusters in the northeast edge, northwest 

and on the southwest edge of the country. These patterns are new coldspot, consecutive coldspot, persistent 

coldspot, and sporadic coldspot. To further understand and generate a malaria endemicity map from the 

spatio-temporal analysis, the need to compute significant clusters of hotspot and coldspot arises. Local 

outlier analysis was used to identify and combine the statistically significant clusters of hotspot and coldspot 

patterns that emerged from Figure 5 on the one hand, and the presence of local outliers on the other hand 

within the space-time context (Figure 6). Figure 6 shows that there are no significant high-low outlier and a 

low-high outlier in the result. The significant high-high cluster represents LGAs with a 20 years high 

incidence of malaria rate surrounded by LGAs with high cases also for 20 years period. This cluster seems 

to correspond with the intensifying hotspot, consecutive hotspot, persistent hotspot patterns that occurred in 

the western margin cluster in Figure 5. Another high-high cluster was revealed in the southeast margin of 

the country by the Nigeria-Cameroon border.         
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Figure 6: Local outlier analysis for detecting spatio-temporal clusters of malaria endemicity 

The low-low cluster in Figure 6 also corresponds with coldspots in Figure 5. The low-low cluster indicates 

that for a temporal period of 2 decades LGAs with a low malaria incidence rate are surrounded by LGAs 

with a low incidence rate. The low-low clusters occurred in the northeast edge and southwest margin of the 

study area. The multiple types cluster is characterised by LGAs with oscillating clustering behaviour over 

time (not significantly homogenous to be called a hotspot or a coldspot). This cluster which falls in between 

the high and low clusters covers a larger proportion of the country. To further understand and simplify the 

cluster patterns, the high-high cluster was reclassified as a high endemic area. This is because the LGAs that 

makes up this cluster were significant malaria incidence hotspot for the 20 years under study. The low-low 

clusters were classified as a low endemic area since such LGAs manifest as significant coldspots through 

the 20 years. The multiple types of clusters were reclassified as medium endemic areas (Figure7) because 

they consist of LGAs with diverse cluster patterns that kept changing over time. The medium endemic cluster 

is as important as the others because it can metamorphose into high and into the low endemic area when 

changes in malaria incidence rate occur.  

Figure 7 revealed two major clusters of high falciparum malaria-endemic area and 3 major clusters of 

coldspot. The identified significant 20 years high endemic areas are clustered along the greater part of the 

Nigeria-Benin Republic border, covering 13 LGAs in Kebbi State, Niger State, Kwara State and Oyo State. 

The second-high endemic cluster occurred along the Nigeria-Cameroon border covering 2 LGAs in Taraba 

State. The largest low endemic cluster occurred in the northeast region, along the Nigeria-Cameroon border 

and the Nigeria-Niger border. This cluster covered 25 LGAs in Borno State, Yobe State and Adamawa State. 

The second low endemic cluster occurred in the south-west region along the Atlantic coast. This cluster 

covers 20 LGAs in Lagos State and Ogun State. The third low endemic cluster occurred in the south-south 

region of the country, covering 8 LGAs in Delta State and Edo State.         

The results of this empirical study revealed that there is a general decline in falciparum malaria in Nigeria. 

The temporal trend of malaria incidence rate per 1000 persons shows that the drop in the incidence started 

in 2007 up to 2015 from where it started to flatten out to 2019. Despite this decline, uncertainty characterises 

the thought of whether the country is driving towards the pre-elimination stage or how long it will take to 

get there. This is because Figure 7 shows that a significant amount of the LGAs (706) falls with the medium 

endemic cluster. This cluster type is a combination of cluster patterns oscillating from hot to cold and from 

cold to hot over the 20 years. Figure 3 presented a clear picture of this scenario where there is a 3-year 

consistent spatial and temporal change in the pattern of hotspot and coldspot clusters. This oscillatory 

behaviour may be caused by socio-spatial behavioural and or environmental dynamism inherent in these 

areas.           
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Figure 7: Local strata of falciparum malaria endemicity 

Notwithstanding, other several interesting results are presented here, and they include the objective 

identification and classification of Nigeria into fine-grain (high resolution) falciparum malaria endemicity 

strata using a long temporal span incidence rate data. The objective or empirical analysis produced results 

much more robust compared with the existing studies on malaria endemicity mapping and modelling that is 

based on descriptive analysis which involved presenting and comparing results with choropleth maps (Weiss 

et al., 2019). The results were able to identify LGAs with a high malaria incidence rate. This is the first step 

to any malaria control measures or interventions. Figure 7 shows that high endemic malaria strata seem to 

cluster around the Nigeria-Benin Republic border and Nigeria-Cameroon border. This suggests that cross 

border transmission may be taking place over these years. Similar findings have been reported in Namibia 

(Alegana et al., 2013) and Kavango along the Angola-Botswana border (Noor et al., 2013).  

The high endemic strata that occurred in the west margin covers 13 LGAs in 3 states (Oyo, Kwara and 

Niger). Among these 13 LGAs, 5 have a direct borderline with the Benin Republic and there are several 

border towns in these LGAs, such as Okerete-Ode (Saki West LGA in Oyo State); Chikanda (Baruten LGA 

in Kwara State) and Babana (Borgu LGA in Niger State). These areas are dotted with a plethora of unmanned 

border posts and the free trade treaty of the Economic Community of West African States (ECOWAS) makes 

these border posts predominantly porous. Further investigation and surveillance are required to ascertain 

whether a cross-border transmission is responsible for the high endemic layer that occurred in this cluster of 

LGAs. For example, genetic sequencing or genomic investigation needs to be employed to understand the 

transmission dynamics and the malaria parasite movement based on self-reported travel history data 

(Tessema et al., 2019). Also, genomic tracking would help to improve understanding of whether this cluster 

is a consequence of mobility or whether it is a product of some inherent behavioural practices of the people 

living in these areas or some environmental confounding factors.  

The emerging high endemic cluster at the northeast Nigeria-Cameroon border occurred in 2 LGAs and may 

probably spread to other sounding LGAs. This high endemic cluster is classified as emerging because as 

shown in Figure 3 significant hotspot did not occur in the first temporal stage. Hotspot cluster started to 

emerge around this region in the second temporal stage and continued to the end of the third temporal stage. 

There was a period of hotspot degradation from the fourth to the fifth temporal stages. On the sixth to the 

last temporal stages, the hotspot re-emerged heavily and covered several surrounding LGAs. This cluster 

needs to be placed under surveillance and transmission interrupting intervention for these LGAs, if any, 

needs to be increased. 

It is not unexpected that a low endemic cluster would occur in the northeast region of the country. Figure 3 

shows that the LGAs that makes up this cluster in Borno State, Yobe State and Adamawa State were 

consistently malaria coldspot throughout the 20 years. This low endemicity may be attributed to 

environmental and climatic factors. For example, aridity and desertification that characterises this region are 
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an unfavourable condition for mosquito breeding since there would be less of ponds and other waterlog. 

Also, evidence from the malaria indicator survey shows that the north-east among other regions has the 

highest concentration of ITN intervention in the country (United State Embassy in Nigeria, 2011). These 

factors may have promoted the low endemic rate in this cluster. Low endemicity occurred in the south-west 

region (Lagos and Ogun States) and the south-south region (Edo and Delta States). These areas of low 

incidence rate would provoke the attention of health researchers, policymakers and planners to seek to 

investigate and understand the reason for this low incidence rate.  

4. CONCLUSION 

The approach adopted in this study is a robust and better accurate way of modelling space-time data. The 

results are empirically derived local and fine grain malaria incidence rate spatial and temporal maps revealing 

the nationwide dynamics in malaria hotspot and coldspot. Also, using a space-time cube method of data 

aggregation, 2 decades of malaria incidence rate datasets were used to objectively produce a local endemicity 

map which will serve as a vital tool for informed decision-making during interventions and surveillance. In 

epidemiology, the major challenge in intervention deployment, smart resource allocation, surveillance, 

monitoring and evaluation is the ability to locate spatial clusters of disease infection. The implication of 

these results is that they provide the springboard for the design of various malaria control and elimination 

strategies.  
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