

# **Original Research Article**

# Identification of Collapsible Soils within Maiduguri Metropolis, Borno State, North-Eastern Nigeria

# \*<sup>1</sup>Kalsari, L.M., <sup>2</sup>Eberemu, A.O. and <sup>1</sup>Kundiri, A.M.

<sup>1</sup>Department of Civil and water Resources Engineering, University of Maiduguri, Borno State, Nigeria. <sup>2</sup>Department of Civil Engineering and Africa Centre of Excellence on New Pedagogies in Engineering Education (ACENPEE), Ahmadu Bello University Zaria, Kaduna State, Nigeria. \*kalsari219@gmail.com

http://doi.org/10.5281/zenodo.14566352

| ARTICLE INFORMATION                                                                                                                      | ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Article history:<br>Received 01 Apr. 2024<br>Revised 18 Dec. 2024<br>Accepted 21 Dec. 2024<br>Available online 30 Dec. 2024<br>Keywords: | This work dwells on the identification of collapsible soils with<br>Maiduguri Metropolis latitude 11° 41' 30 " to 12° 00' 00 " N an<br>Longitude 13° 00' 00" to 13° 44" E. Soil samples were collected from<br>five designated locations (A1- A5) at 20m intervals betwee<br>points and average depth of 1.2m within the study area (i.<br>Dikwa, Damboa, Baga, Jos and Bama roads). The plastici                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| <i>Keywords</i> :<br>Collapsibility<br>Collapse potential<br>Disturbed<br>Sampling<br>Swelling                                           | characteristics revealed that the soils are non-plastic with liquid<br>limits of 15-20%. The percentage passing B.S No 200 sieve<br>$(0.75\mu m)$ ranging from 0.18-2.9%, thus the soil was classified as<br>A-3 in accordance with the American Association of States<br>Highway and Transportation officials (AASHTO) and SP<br>according to Unified Soil Classification System (USCS). The<br>applications of qualitative method in ascertaining collapse<br>potential using some index properties showed that the entire area<br>was highly collapsible, prone to collapse, some small collapse<br>settlements. The identification of this occurrence will no doubt<br>necessitate some proactive to structural failures. |  |  |  |  |
|                                                                                                                                          | © 2024 RJEES. All rights reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |

# **1. INTRODUCTION**

Collapsible soils are considered as one of the problematic soils found in arid and semi-arid regions of the world which covers almost 10% of the earth's surface (Evans *et al.*, 2004; Nelder *et al.*, 2008). The soils are generally under unsaturated condition in the dry state, with negative pore water pressure resulting in higher effective stresses and greater shear strength. Collapsible soil can be obtained as Aeolian (such as dune sand with low silt or clay content and high void ratio) Jiangyong *et al.* (2022), residual soils and sediments due to muddy flood (Mahnam *et al.*, 2012). Loess soils have collapsibility potential and can be found in desert area in Iran, South of Kashan, Kerman province, Agh Ghala in Gorgan province, Masjid Soleiman city and Silvand in Fars province (Khosravi, 2002). These soils undergo reduction in volume, when their moisture content increases or upon application of additional

loads (Coduto, 2001) exhibiting collapse mechanism. Such type of soils contain in most cases over 60% fines and have a porosity of 50 to 60%, liquid limit of about 25% and plastic limit ranging from 0 to 10% (Alain *et al.*, 2012).

Collapsible soils present significant challenges to the engineering profession during construction, service life and to a lesser degree during design stage. In addition to these problems, challenges related primarily to differential settlement and embankment failures are also encountered in road construction. It is therefore essential for the geotechnical engineers to explore sufficient knowledge on how to effectively handle all types of problematic soils, such as collapsible soils. In some parts of Maiduguri and its suburbs, there exists a deposit of light brown to yellowish brown ferruginous sand-stones popularly known as the Bama ridge soils (Kundiri *et al.*, 2016), this soil pose serious challenges in terms of low bearing capacity. Thus, these soils could be considered a threat for construction of civil engineering facilities and hence its characterization is expedient.

## 2. MATERIALS AND METHODS

## **2.1. Material Collection and Preparation of Samples**

Disturbed soil samples were collected from five designated locations within the study area (i.e. Dikwa, Damboa, Baga, Jos and Bama roads) at intervals of 20m and average depths of 1.2m for each of the sampling points. Soil samples were obtained using hand Auger and preserved in plastic bags before conveying to Civil and Water Resources Engineering Laboratory of University of Maiduguri for testing.

## 2.2. Methods

Index properties tests conducted include; moisture content, specific gravity, particle size distribution and compaction in accordance with specification outlined in BS 1377 (2022). Method of evaluation of collapse potential using criteria stipulated by several researchers were adopted (Priklonski, 1952; Handy, 1957; Zur and Wiseman, 1957; Clevenger 1958; Gibbs and Bara, 1962).

## **3. RESULTS AND DISCUSSION**

Index properties results showed low values of specific gravity (Gs) between 2.5-2.9. The soils are nonplastic with liquid limits between 15-20%, and the percentage passing B.S No 200 sieve (0.75 $\mu$ m) between 0.18-2.9%. The soils are classified as A-3 in accordance with American Association of States Highway and Transportation officials AASHTO (1986) and poorly graded sand (SP) according to Unified Soil Classification System (USCS) ASTM D2487 (2006). The compaction characteristics showed that Optimum Moisture Content (OMC) of the soils ranged from 13.5 - 16% with maximum dry densities (MDD) ranging from 1.57-1.94g/cm<sup>3</sup>. Table 1 presents the index properties of the soil.

|             |          | Т     | able 1: I | ndex prope | rties of soils |     |                     |      |
|-------------|----------|-------|-----------|------------|----------------|-----|---------------------|------|
| Location    | Sampling | LL    | PL        | OMC        | MDD            | C   | Soil classification |      |
|             | point    | (%)   | (%)       | (%)        | $(g/cm^3)$     | Gs  | AASHTO              | USCS |
| D'Ima David | A1T1     | 20.00 | NP        | 15.0       | 1.84           | 2.7 | A-3(0)              | SP   |
| Dikwa Road  | A1T2     | 19.00 | NP        | 11.0       | 1.57           | 2.5 | A-3(0)              | SP   |
| Damboa Road | A2T1     | 18.00 | NP        | 13.5       | 1.88           | 2.8 | A-3(0)              | SP   |
|             | A2T2     | 15.00 | NP        | 5.50       | 1.81           | 2.6 | A-3(0)              | SP   |
| Daga Dagal  | A3T1     | 20.00 | NP        | 10.0       | 1.94           | 2.9 | A-3(0)              | SP   |
| Baga Road   | A3T2     | 18.50 | NP        | 10.0       | 1.85           | 2.7 | A-3(0)              | SP   |
| Jos Road    | A4T1     | 16.00 | NP        | 13.0       | 1.91           | 2.6 | A-3(0)              | SP   |
|             | A4T2     | 16.90 | NP        | 16.0       | 1.84           | 2.6 | A-3(0)              | SP   |
| Bama Road   | A5T1     | 17.00 | NP        | 15.0       | 1.87           | 2.6 | A-3(0)              | SP   |
|             | A5T2     | 19.50 | NP        | 13.0       | 1.94           | 2.6 | A-3(0)              | SP   |
|             |          |       |           |            |                |     |                     |      |

The particle size distribution plots of soils from the study area are shown in Figure 1. The trend of particle size curve showed that sampling point A4T1 of Jos road had the highest percentage passing with up to 99% while Bama road at sampling point A5T2 had the lowest percentage finer of 79%.

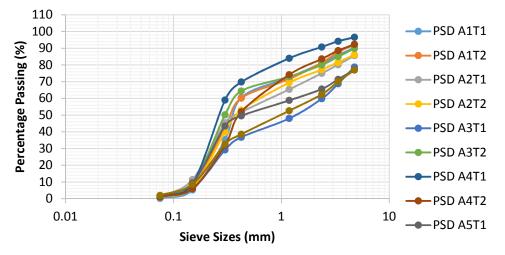



Figure 1: Particle size distribution plots of soils from the study area

## 3.2. Qualitative Method of Evaluating Collapsible Soils

## 3.2.1 Priklonski, (1952) criteria

Table 2 showed the results obtained from the study area based on Priklonski (1952) criteria. The result was obtained based on moisture content and Atterberg limits relationship  $K_D = (W_n - PL)/PI$  where  $K_D$  is the liquidity index,  $W_n$  is the natural moisture content, PL is plastic limit and PI is the plasticity index. The results revealed that five sampling points were observed to be highly collapsible (HCS), four non-collapsible (NCS) with one swelling soil (SS). This might be as a result of non-plastic nature of the soil which is in agreement with the works of Delage (2005); Wail (2012) as well as Mahnam *et. al* (2019).

| Location      | Sampling<br>point | $W_{n}\left(\% ight)$ | PL<br>(%) | PI<br>(%) | Collapsibility coefficient formula | Collapsibility coefficient range | Collapse intensity |
|---------------|-------------------|-----------------------|-----------|-----------|------------------------------------|----------------------------------|--------------------|
| Dikwa Road    | A1T1              | 4.40                  | NP        | 20.00     | $K_D(W_n - PL)/PI$                 | 0.22                             | HCS                |
| DIKwa Kuau    | A1T2              | 13.90                 | NP        | 19.00     |                                    | 0.73                             | NCS                |
| Develop Devel | A2T1              | 18.30                 | NP        | 18.00     | If $K_D < 0$ : highly              | 1.02                             | SS                 |
| Damboa Road   | A2T2              | 5.20                  | NP        | 15.00     | collapsible soils                  | 0.35                             | HCS                |
| Baga Road     | A3T1              | 10.80                 | NP        | 20.00     | If $K_{D} > 0.5$ : non             | 0.54                             | NCS                |
|               | A3T2              | 10.00                 | NP        | 18.50     | collapsible soils                  | 0.54                             | NCS                |
| Jos Road      | A4T1              | 1.70                  | NP        | 16.00     | L.                                 | 0.11                             | HCS                |
| JOS KOAU      | A4T2              | 7.70                  | NP        | 16.90     | If K <sub>D</sub> >1.0: Swelling   | 0.46                             | HCS                |
| Bama Road     | A5T1              | 9.60                  | NP        | 17.00     | soils                              | 0.56                             | NCS                |
|               | A5T2              | 8.40                  | NP        | 19.50     |                                    | 0.43                             | HCS                |

Table 2: Evaluation of collapsibility potential using Priklonski, (1952) criteria

HSC: Highly collapsible soil, NSC: Non-collapsible soil and SS: Swelling soil

#### 3.2.2. Handy, (1957) criteria

Table 3 shows the results obtained from the study area based on Handy (1957) criteria. This criterion used the percentage clay content of a soil or the ratio of liquid limit to saturation moisture content in determination of soil collapsibility. The results depicted that the entire study area was highly collapsible.

|             | Table 5: Evaluation | of conapsibility p      | otential using Handy, (1957) criteria   |                    |
|-------------|---------------------|-------------------------|-----------------------------------------|--------------------|
| Location    | Sampling<br>point   | Clay contents<br>(%)    | Collapsibility coefficient range        | Collapse intensity |
| D'Ima Davi  | A1T1                | 0.4                     |                                         | HCS                |
| Dikwa Road  | A1T2                | 0.6                     | Clay content < 16%; Highly collapsible  | HCS                |
| Domboo Dood | A2T1                | 0.2                     |                                         | HCS                |
| Damboa Road | A2T2                | 0.6                     | 24% > clay content > 16%; Probability   | HCS                |
| Deve Devi   | A3T1                | 0.2                     | to collapse                             | HCS                |
| Baga Road   | A3T2                | 0.6                     | 22.5.1. ( ) 25.0/ 1.1.11/               | HCS                |
| Jos Road    | A4T1                | 0.8                     | 32 > clay content > 25%; probability of | HCS                |
| JOS KOAU    | A4T2                | 0.4                     | collapse of less than 50%               | HCS                |
|             | A5T1                | A5T1 0.8 Clay content 5 | Clay content $> 32\%$ ; Non collapsible | HCS                |
| Bama Road   | A5T2                | 1.0                     | Chay content > 5270, Non conapsible     | HCS                |

Such a scenario occurred as a result of the low clay content which is dominant in the soils of the test area. Similar findings were reported earlier by Delage (2005) and Wail (2012).

Table 3: Evaluation of collapsibility potential using Handy, (1957) criteria

## 3.2.3. Zur and Wiseman, (1957) criteria

Table 4 present the result obtained based on dry density and liquid limit of the soil. Zur and Wiseman (1973), used the dry density versus liquid limit as a collapse criteria. The results revealed that the entire study area was prone to collapse. This might be as a result of high void ratio of the soil which is in agreement with Wail (2012).

| Location                                                                                          | Sampling<br>Point | Do   | D <sub>LL</sub> | Collapsibility coefficient formula                                                                                  | Collapsibility<br>coefficient<br>range | Collapse intensity |    |
|---------------------------------------------------------------------------------------------------|-------------------|------|-----------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------|----|
| Dikwa Road                                                                                        | A1T1              | 1.84 | 20.00           |                                                                                                                     |                                        | PC                 |    |
| Dikwa Koad                                                                                        | A1T2              | 1.57 | 19.00           |                                                                                                                     | 0.09                                   | PC                 |    |
| Damboa Road<br>A2T2<br>Baga Road<br>A3T1<br>A3T2<br>Jos Road<br>A4T1<br>A4T2<br>A5T1<br>Bama Road | A2T1              | 1.88 | 18.00           | $D_0/D_{LL}$<br>If, $D_0/D_{LL}$<br>< 1.1; soil prone to collapse<br>If, $D_0/D_{LL}$<br>< 1.3; soil prone to swell | 0.08<br>0.10<br>0.12                   | PC                 |    |
|                                                                                                   | A2T2              | 1.81 | 15.00           |                                                                                                                     |                                        | PC                 |    |
|                                                                                                   | A3T1              | 1.94 | 20.00           |                                                                                                                     | 0.10                                   | PC                 |    |
|                                                                                                   | A3T2              | 1.85 | 18.50           |                                                                                                                     | 0.10                                   | PC                 |    |
|                                                                                                   | A4T1              | 1.91 | 16.00           |                                                                                                                     | 0.12                                   | PC                 |    |
|                                                                                                   | A4T2              | 1.84 | 16.90           |                                                                                                                     | 5.90 0.11<br>7.00 0.11                 |                    | PC |
|                                                                                                   | A5T1              | 1.87 | 17.00           |                                                                                                                     |                                        | 0.11               | PC |
|                                                                                                   | A5T2              | 1.94 | 19.50           |                                                                                                                     | 0.07                                   | PC                 |    |

Table 4: Evaluation of collapsibility potential using Zur and Wiseman, 1957 criteria

PC: Prone to collapse

# 3.2.4. Clevenger, (1958) criteria

Table 5 showed the results obtained from the study area. Clevenger suggested a criterion for collapsibility of soils based on its maximum dry density. The results revealed that the entire study area showed small collapse settlement as a result of low dry densities. Similar findings were achieved by Rafie *et. al* (2008), Wail (2012) and Mahnam *et. al* (2019).

# 3.2.5. Gibbs and Bara (1962) criteria

Table 6 present the result obtained from the study area. This criterion used the natural dry density together with the liquid limit for estimating the susceptibility of soil to collapse as;  $\gamma_d < 162.3/(1+0.026W_L)$  Ibs /ft<sup>3</sup> or  $e_0 > 2.6W_L$  /100 where,  $\gamma_d$  is the natural dry density and  $W_L$  is the liquid limit. The results entails that the entire soils were collapsible. Such scenario was achieved by Wail (2012) and Mahnam *et. al* (2019).

| L.M. Kalsari et al. / Nigerian Research Journal of Engineering and Environmental Sciences |
|-------------------------------------------------------------------------------------------|
| 9(2) 2024 pp. 901-906                                                                     |

| Table 5: Evaluation of collapsibility potential using Clevenger (1958), criteria |                   |                                         |                                          |                           |                           |                                  |                   |                    |  |  |
|----------------------------------------------------------------------------------|-------------------|-----------------------------------------|------------------------------------------|---------------------------|---------------------------|----------------------------------|-------------------|--------------------|--|--|
| Location                                                                         | Sampling<br>point | Max dry<br>density( g/cm <sup>3</sup> ) | Collapsibility<br>coefficient<br>formula |                           |                           | Collapsibility coefficient range |                   | Collapse intensity |  |  |
| Dikwa Road                                                                       | A1T1              | 1.84                                    |                                          |                           | >1.44                     | >1.44 g/cm <sup>3</sup>          |                   | y collapse         |  |  |
| Dikwa Koau                                                                       | A1T2              | 1.57                                    | If                                       | γ <sub>d</sub> max <      | >1.44                     | >1.44 g/cm <sup>3</sup>          |                   | Slightly collapse  |  |  |
| Damboa Road                                                                      | A2T1              | 1.88                                    |                                          | $8 \text{ g/cm}^3$ :      |                           | $>1.44 \text{ g/cm}^3$           |                   | Slightly collapse  |  |  |
| Damboa Road                                                                      | A2T2              | 1.81                                    | Significant                              |                           |                           | $>1.44 \text{ g/cm}^{3}$         |                   | Slightly collapse  |  |  |
| Baga Road                                                                        | A3T1              | 1.94                                    |                                          | ttlement                  | >1.44                     |                                  | e                 | y collapse         |  |  |
| Daga Road                                                                        | A3T2              | 1.85                                    |                                          | and                       | >1.44                     | -                                | -                 | y collapse         |  |  |
| Jos Road                                                                         | A4T1              | 1.91                                    | γ <sub>d</sub> max >1.44                 |                           | >1.44                     |                                  | 0                 | y Collapse         |  |  |
| 505 10000                                                                        | A4T2              | 1.84                                    | U                                        | g/cm <sup>3</sup> : Small |                           | $>1.44 \text{ g/cm}^{3}$         |                   | Slightly Collapse  |  |  |
| Bama Road                                                                        | A5T1              | 1.87                                    | Collapse                                 |                           | >1.44 g/cm <sup>3</sup>   |                                  | Slightly Collapse |                    |  |  |
|                                                                                  | A5T2              | 1.94                                    |                                          |                           | >1.44                     | g/cm <sup>3</sup>                | Slightl           | y Collapse         |  |  |
| Т                                                                                | Table 6: Evalu    | ation of collapsil                      | oility pot                               | ential using              | Gibbs and I               | Bara (1962) c                    | riteria           |                    |  |  |
| Location                                                                         | Sampling<br>point | Dry<br>density<br>(g/cm <sup>3</sup> )  | <b>W</b> <sub>L</sub><br>(%)             | Collaps<br>coefficient    |                           | Collapsil<br>coefficient         |                   | Collapse intensity |  |  |
| Dilwo Dood                                                                       | A1T1              | 1.84                                    | 20.00                                    |                           |                           |                                  |                   | CS                 |  |  |
| Dikwa Road                                                                       | A1T2              | 1.57                                    | 19.00                                    |                           |                           | 106.                             |                   | CS                 |  |  |
| Develop Devel                                                                    | A2T1              | 1.88                                    | 18.00                                    |                           |                           | 108.                             |                   | CS                 |  |  |
| Damboa Road                                                                      | A2T2              | 1.81                                    | 15.00                                    |                           |                           | 110.<br>116.                     |                   | CS                 |  |  |
|                                                                                  | A3T1              | 1.94                                    | 20.00                                    | $\gamma_{\rm s} < 1$      | $\gamma_{\rm d} < 162.3/$ |                                  |                   | CS                 |  |  |
| Baga Road                                                                        | A3T2              | 1.85                                    | 18.50                                    | (1+0.02                   |                           | 106.<br>109.                     |                   | CS                 |  |  |
|                                                                                  | A4T1              | 1.91                                    | 16.00                                    | `                         | ,                         | 114.                             |                   | CS                 |  |  |
| Jos Road                                                                         | A4T2              | 1.84                                    | 16.90                                    |                           |                           |                                  | 112.7             |                    |  |  |
| Bama Road                                                                        | A5T1              | 1.87                                    | 17.00                                    |                           |                           | 112.                             |                   | CS<br>CS           |  |  |
|                                                                                  | A5T2              | 1.94                                    | 19.50                                    |                           |                           | 107.                             | /                 | CS                 |  |  |
|                                                                                  | 11012             |                                         |                                          | ancihla coil              |                           |                                  |                   | 00                 |  |  |

CS: Collapsible soil

## 4. CONCLUSION

In this research, the application of qualitative method in ascertaining collapse potential using some index properties of the soils based on moisture content and Atterberg limits relationship showed that that six sampling points were observed to be highly collapsible (HCS), three non-collapsible (NCS) with one swelling soil (SS), while criteria based on percentage clay content, dry density versus liquid limit, maximum dry density and natural dry density together with the liquid limit showed that the entire area were highly collapse, prone to collapse, some small collapse settlements. The identification of this occurrence will no doubt necessitate more proactive measures to reduce structural damage to infrastructure (buildings, pavement, dams etc) built over them; resulting from differential settlement, ground fissuring due to their low bond strength, high void ratio which makes the soil structure liable to volume changes under small structural load once they are saturated or via shock wave.

#### 5. ACKNOWLEDGMENT

The authors wish to acknowledge the assistance and contributions of the laboratory staff of Department of Civil and Water Resources Engineering, University of Maiduguri, Maiduguri toward the success of this work.

#### 6. CONFLICT OF INTEREST

There is no conflict of interest associated with this work.

#### REFERENCES

AASHTO (1986). Standard Specification for Transportation, Material and Methods of Sampling and Testing. 14<sup>th</sup> ed. Washington D.C. *Amsterdam Association of States Highway and Transportation Officials.* 

Alain, E. H., Pao-Tsung, H., Racheal, B. and Maria, C.S. (2012). Identification and behavior of Collapsible Soils. *Joint Transportation Research Program Technical Report FHWA/IN/JTRP*.

ASTM D 2487 (2006). Standard practice for classification of soils for engineering purposes (unified soil classification system), *American Society for Testing and Materials*. Philadelphia.

BS 1377-2:(2022). Methods of test for soils for civil engineering purposes - Classification tests and determination of geotechnical properties. British Standard Institution, UK.

Clevenger, W. A. (1958). Experiences with loess as foundation Material. *Transaction of American Society of Civil Engineers*, 123, pp.151–169.

Coduto, D. P. (2001). Foundation Design Principles and Practices (2<sup>nd</sup> ed).

Delage, P., Cui1, Y.J. & Antoine, P. (2005). Geotechnical problems related with loess deposits in Northern France. *Proceedings of International Conference on Problematic Soils*, 25-27 May 2005, Eastern Mediterranean University, Famagusta, N. Cyprus

Evans, R. D., Jefferson, I., Northmore, K. J., Synac, O. and Serridge, C. J. (2004). Geophysical investigation and insitu treatment of collapsible soils. In G. E. for T. Projects (ed.), *Proceedings of Geo-Trans*, pp.1848–1857. Geotechnical Special publication, n 126 II.

Gibbs, H.J. and Bara, J. P. (1962). Prediction Surface Subsidence from Basic Soil Tests, *Report No. EM-658, Bureau of Reclamation*.

Handy, R. L. (1973). Collapsible loess in Lowa. Soil Science Society of America, pp. 281-284.

Jiangyong Wang, Guizai Gao, Dongmei Jie, Qi Fang, Hainan Wang, Honghao Niu, Meng Meng, Guihua Zhang, Ying Liu, Lina Song, Linlin Liu. (2022). Aeolian soils on the eastern side of the Horqin Sandy Land, China: A provenance and sedimentary environment reconstruction perspective, CATENA, Volume 210,105945, ISSN 0341-8162. Available electronically at <a href="https://doi.org/10.1016/j.catena.2021.105945">https://doi.org/10.1016/j.catena.2021.105945</a>

Khosravi, F. (2002). Soils and collapsibility potential on different areas in Iran. *Third international conference in Geotechnical Engineering and soil Mechanics*, Tehran, Iran. (In persian).

Kundiri, A. M., Muhammad, A.S. and Muhammad, I. S. (2016). An Investigation of Geotechnical Properties of Bama Ridge Soil as a suitable sub Grade Material in Road Construction. *Faculty of Engineering Seminar Series*, 7, pp. 31–35.

Mahnam, R.H., Micheal, Y. and Rouzbeh, D. (2022). Evaluation of Collapsibility Potential in Soil Layers Based on Practical Methods (Case study: Hir City-Ardabil Province). *Advance Researches in Civil Engineering*, 1(2), pp. 42-49.

Nelder, L. M., Lan, S., Northmore, K. N., Jefferson, I. and David, C.E (2008). On-site Characterization of Loessic Brick earth Deposits at Ospringe, Kent, UK. *Proceedings of the Institution of Civil Engineers, Geotechnical Engineering*, 16 (1), pp. 3–17.

Priklonski, V. A. (1952). Prediction of metastable soil collapse. *Publication of the 121st International Association of Hydrological Sciences*.

Rafie, B.M.A., Moayed, R.Z. and Esmaeli, M. (2008). Evaluation of Soil Collapsibility Potential: A Case Study of Seamnan Railway Station. *Electronic Journal Of Geotechnical Engineering*, 13, pp. 1-7.

Wail,O. M. H. (2012). An Experimental Study on Collapsible Soils in Ondurman. A thesis submitted in partial fulmfillment for the degree of Master of Science in Building Technology.

Zur, A. and Wiseman, G. (1973). A study of collapse phenomena of an undisturbed loess. *Proceedings of the 17th International Conference on Soil Mechanics and Foundation Engineering*, 22, pp. 265–269.