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Tuberculosis (TB) and Dengue are two diseases that have resulted
in high mortality, mostly in developing countries. In this work, we
investigate the causes of the backward bifurcation phenomenon in a
mathematical model describing the dynamics of Tuberculosis-
Dengue co-infection in a population where both diseases are
endemic, a phenomenon characterized by the coexistence of a
stable disease-free equilibrium with a stable endemic equilibrium,
when the associated reproduction number is less than unity. The
analyses showed that, for the TB-only model, exogenous reinfection
and the reinfection of previously treated individuals are the causes
of the backward bifurcation phenomenon, while for the Dengue-
only model, disease-induced deaths in infected humans will lead to
the backward bifurcation in the system. In co-infection scenarios
where tuberculosis is having a larger disease burden than dengue,
it is shown that the exogenous reinfection of latently infected TB
individuals and the reinfection of previously treated individuals for
TB will lead to the backward bifurcation phenomenon. The
implication of these results is that for the reproduction numbers of
the model to be useful for designing robust public health control
measures against both diseases, concerted efforts must be geared
towards minimizing the incidences of exogenous reinfection of
latently infected TB cases, reinfection of previously treated
individuals for TB and disease-induced deaths due to dengue
infection.

© 2017 RJEES. All rights reserved.

1. INTRODUCTION

Tuberculosis (TB) is an airborne disease caused by Mycobacterium tuberculosis. According to the
World Health Organization (WHO), about 9 million persons were infected with TB in 2013, with
about 1.5 million deaths reported (WHO, 2014).
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Dengue is a viral, vector borne disease, spread by the Aedes Aegypti mosquito (Nuraini et al., 2009).
It was estimated that about 50 million infections occur annually in over 100 countries (WHO, 2005).
There is no specific treatment for curing dengue patients (Nuraini et al., 2009). Hospital treatment, in
general, is given as supportive care which includes bed rest and analgesics (Nuraini et al., 2009).

There are 22 Tuberculosis (TB) high burden countries worldwide, and together they account for about
80% of the world’s tuberculosis (TB) infection (International SOS, 2015). India accounts for over
20% of the world’s multi-drugs resistant tuberculosis (MDR-TB) cases (International SOS, 2015).
Dengue fever risk is present throughout India, including most metropolitan cities and towns
(International SOS, 2015).

Mathematical models have long been used in understanding the underlying factors affecting the
dynamics of infectious diseases (for example, see Okuonghae and Omosigho (2011) and Okuonghae
and Ikhimwin (2016) for some TB mathematical models). Generally, the dynamics of most
epidemiological models is often characterized by the basic reproduction number, usually written as
R,. The reproduction number measures the average number of new cases generated by a typical
infected individual introduced into a completely susceptible population (Hethcote, 2000). Typically,
when Ry>1, the disease will persist in the population and the endemic equilibrium will, generally, be
locally asymptotically stable. When R.< 1, then the disease will die out with time (even with the
influx of a small number of infected individuals into the population), so that the disease free
equilibrium (DFE) is locally asymptotically stable. However, in some cases, when R,<I, the stable
DFE will co-exist with a stable endemic equilibrium and an unstable endemic equilibrium, resulting to
the phenomenon called backward bifurcation (see Gumel (2012) for some causes of the backward
bifurcation phenomenon).

In this work, we will investigate the causes of the backward bifurcation in a mathematical model
describing the dynamics of TB-Dengue co-infection in a population.

2. MODEL FORMULATION

Let Nu(t) and Ny(t) denote the total number of humans and vectors at time t, respectively. The model
sub-divides these populations into a number of mutually-exclusive compartments, as given below.

The total population of human and vectors is divided into the following mutually exclusive
epidemiological classes, namely, susceptible humans (Su(t)), humans with latent TB (Er(t)), humans
with active stage TB (It(t)), humans treated of active TB (Tt(t)), humans with latent dengue (Ei(t)),
humans with dengue (Ii(t)), humans treated of dengue (Ri(t)), susceptible vectors (Sy(t)), vectors at
the latent stage of dengue (Ev(t)), vectors infectious with dengue (Iv(t)), humans with latent TB and
latent dengue (Ex(t)), humans with latent TB and infectious dengue (Es(t)), humans with active TB
and latent dengue (E4(t)), and humans with active TB and dengue (I,(t)). Hence, we have that,

N O)=S,()+E {0+ L{)+ .0+ B0)+1(0)+ R+ E(0)+ E(0)+ E(1)+1,(2) (1)

and

N, (1)=S,()+E,(0)+1,(0) )

Susceptible humans are recruited at a rate Ay while the susceptible vectors are recruited at a rate Ay,
Susceptible humans contract TB at a rate
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ZT — IBT (IT +77T1E4 +77T212) , (3)
NH

where fr is the TB infectious contact rate, and 77, and 77, account for the relative infectiousness of

those in E,and I, classes compared to those in I, class; we assume that 77, >7},, > 1. Susceptible

humans contract dengue at a rate given by Equation (4)

l _ ﬁVH (ﬂva +Iv)
DV T N
H

where 1,, < 1 accounts for the relative infectiousness of vectors with latent dengue (Ev ) compared to
vectors in the Iv class. Susceptible vectors acquire dengue infection from infected humans at a rate
given by Equation (5)

4)

A = Brv(MaE1+nBl1+1cE2+NpEs+NEEy+0F12) 5
DH = N . 3

The modification parameters 1g, "¢, fp, and 77, account for the relative infectiousness of those in the

I;, E,, E5 and I, classes compared to those in the E; and Ey classes, where 4 = g < 1.
2.1. Derivation of Model Equations

Individuals in the Ey, E, and E5 classes can be exogenously re-infected at the rate oyAr, 0,44 and
g3 Ar, respectively, where 61, 62 and 63 are modification parameters. A fraction F,, (0 < Pry < 1) of

susceptible and treated individual’s progress faster to the I, class while a fraction (1— Prz) 0=
Pr, < 1) of those treated for dengue progress faster to the I class. Also, a fraction (1 - PDI) 0 <

Pp; < 1) of individuals in the E, class progress faster to the E, class and (1— Pm) 0Py, <1

of those in the I; class progress faster to the I, class.

Active TB is treated at arate ry, 7, and 7; for those in the classes I, E, and I, classes, respectively,

while dengue is treated at a rate 7,7, and 7, for those in I;, E; and I, classes respectively. Singly
infected individuals with latent TB progress to active TB at a rate k;, while dually infected individuals
in the E, class progress to the E, class at the rate k,. Individuals in the E, class progress to the I,

class at the rate k;. Singly infected individuals with latent dengue progress to active dengue at a rate
7, while dually infected individuals in the E, class progress to the E, class at the rate },. Infected

individuals in the E, class progress to the I, class at a rate ;.

Natural death in humans occurs at a rate (4, in the classes Sy, Er, Iy, T, Eqy, 11, Ry, E;, Es,
E, and I, while those in the I, E, and I, classes undergo an additional TB induced death at the
rates dy,,d;, and d,,, respectively. Individuals in the [, E; and I, classes undergo an additional

dengue induced death, at rates O,,,0,, and J,;,, respectively. Treated individuals have a relative

difference in susceptibility to TB after a previous infection compared to wholly susceptible
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individuals (with € =20 being the modification parameter accounting for this relative difference in
susceptibility). Natural vector death occurs, at a rate uy,, in the classes Sy, Ey and I, while the
vectors in the [, class undergoes additional dengue induced death, at a rate &y, although this is
negligible as infected vectors are not deemed to be affected by dengue. Exposed vectors progress to
the infectious stage at the rate yy.

The above assumptions result in the following system of nonlinear ordinary differential equations:

Sy = Ay — ArSy — UnSu — ApvSh, (6)
Er = (1 = Pry)ArSy + (1 = Pry)eArTr — o4ArEr — (uy + k1) Er — ApyEr + PraArRy +
) T1E, (N
Iy = PryArSy + Pri€drTr — (uy + dpy + 1)y + 0147 Ep — Apylr + (1 = Pra)ArRy +

T3l + k{Er, ®)
Ty = rily — ATy — uyTr — ApyTr, ®
Ey = ApySy + ApyTr — (y1 + up)Ey — ArEy + 12E,, (10)
L = viEy = (1y + py + Sp)ly — Agly + 131, (I
Ry = t1ly — uyRy — ArRy, 12)
Sy = Ay = ApuSy — tySy, 13)
Ey = ApuSv — (vv + uy)Ey, (14)
Iy = yvEy — (uy + 6uy)ly, s)
Ey = ApyEr + PpiArEy — (V2 + ko + up)E; — 02A7E,, (16)
E3 = y2E; + PpaArly — (k3 + 72 + 6p2 + un)Ez — 0347E;3, a7
Ey = (1 = Pp)ArE; + Apylr + kaEy — (drp + 72 +¥3 + n)Es + 0247Es, (18)
Iy = (1 = Ppp)Arly — (T3 + 73 + 8pg + drz + pp)lz + k3E3 + y3E, + 0347 E;3. 19)

Table 1 gives the description of the state variables of the model (6) — (19).

Table 1: Description of the state variables of the model (6) — (19)

Variable Description
SH Susceptible human population
Er Human population with TB in latent stage (TB only)
Ir Human population with TB in active stage (TB only)
Tr Human population treated of TB (TB only)
E; Human population with dengue in latent stage (Dengue only)
I Human population with dengue (Dengue only)
R; Human population treated of dengue (Dengue only)
Sy Susceptible vectors population
Ey Exposed vectors
Iy Infectious vectors
E; Dually infected humans with latent TB and latent dengue
E; Dually infected humans with dengue and latent TB
E4 Dually infected human with active TB and latent dengue
e} Dually infected human with active TB and dengue

3. ANALYSIS OF SUB-MODELS

Before analyzing the complete model (6) — (19), it is instructive to gain insight into the occurrence of
the backward bifurcation phenomenon for the TB-only model and the dengue- only model.
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3.1. TB-only Model

The TB only model is derived in (6) — (19) by setting Ey =Ry =Sy, =Ey, =y =E, =E; =E, =
I, = 0. Hence we have

dS_H =Ay _ATSH —HySy,
dt (20)
dE
L = (I_PTI)/?‘TSH +(1_PT1)G ﬂTTT _O-lﬂTET _(IUH +kl)ET’
dt (21)
/i
d_T = Tl/l’fSH +FP € ﬂTTT _(IUH +dp, +”1)IT +61/17ET +kE;,
dt (22)
ﬁ =nl,—e 4T, —u,T;,
dt (23)
Where /1T = ﬁTIT and NH = SH + ET + IT + TT.

=5
Consider the region D; = {(Sy, Er, Iy, Tr)eR%: Ny < 2—1’} It can be shown that the set D; is positively
H
invariant and a global attractor of all positive solution of the system (20) — (23). We claim the
following.
Lemma 1: The region D; is positively invariant for the system (20) — (23).
Proof: The rate of change of the total population is give as
N, (O)=8, +E, +1,+T, =N, —p, (S, +E, +1,+T,)—d, I,
Ny ([)ZAH —HyNy _dTIIT_

Since the right-hand side of (20) — (23) is bounded by A, — £, N, standard comparison theorem
(Lakshmikantham et al., 1989) can be used to show that

Ny < Ny (0)e~Hut + ’;—H [1— ekaut].
H

If Ny(0)< Lﬂ then Ny (0)< 2—” . Thus, D is a positively invariant set under the flow described in (20)
H H

— (23). Hence, no solution path leaves through and boundary of D;. In this region, the model (20) —
(23) is said to be well posed mathematically and epidemiologically.
We now prove the positivity of solutions of the model (20) — (23). We claim the following.

Lemma 2: Let the initial data for the model (20) — (23) be Sy(t) > 0, Ex(t) > 0,I(t) > 0, and
Tr(t) > 0 then the solution Sy(t), Er(t), I+ (t), and Tr(t) with positive initial data will remain
positive for all time t > 0.

Proof: Let t; = sup{t > 0:Sy(t) > 0,Ex(t) > 0,1I7(t) > 0,T;(t) >0} >0

Sy = Ay — ArSy — puSu = Ay — (Ar + ug) S,

which, when solved, leads to
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Su(t2) = Su(Oexp {—pty — [ (@@} + [exp {—uyts = ;" 2r@d@)}] J;" Au[expluny +

J) Ar@d(®}]dy > 0.
Hence, Sy is positive for all time, t. Similarly, we can show that E(t) > 0,I7(t) > 0,and Tr(t) > 0
for all time, t.

3.1.1. Local stability of disease-free equilibrium (DFE) of the TB-only model
The model (20) — (23) has a disease-free equilibrium obtained by setting the right hand side of the
model to zero given by:

™
glz(SH’ET’IT’TT): Hy )

The linear stability of & is established using the next generation operator method on the system (20)
—(23) (van den Driessche and Watmough, 2002). Using the notation in van den Driessche and
Watmough (2002), the matrices F and V, for the new infection terms and the remaining transfer terms
respectively, are given by:

0 (1- PTl).BT) ( 91 0 )
F = ( ,and V = .
0 PryBr —ki g2
It follows that the effective reproduction number of the model (20) — (23), denoted by Ry, is given by:

Ry = p(FV1) = :BT(g1PT1 +k1(1_PT1)) ’

818>
where p(FV™1) is the spectral radius of the matrix FV 1. The next result follows from Theorem 2 in
van den Driessche and Watmough (2002).

Lemma 3: The DFE, &, of the model (20) — (23) is locally asymptotically stable (LAS) if RT <1,

and unstable if R, >1.

The threshold quantity, Ry is the effective reproduction number for the TB sub-model. It represents
the average number of secondary TB infections generated by a typical infected individual in a
completely susceptible population where treatment for TB is available. Epidemiologically speaking,
Lemma 3 implies that TB can be eliminated from the population when Ry < 1 if the initial sizes of the
sub-population of the sub-model are in the basin of attraction of £;. Hence, a small influx of TB-
infected individuals into the community will not generate large TB outbreaks, and the disease will die
out with time.

3.1.2. Backward bifurcation analysis of the TB-only model

It is instructive to characterize the type of bifurcation model (20) — (23) may undergo. We claim the
following result, with the proof (based on the Centre manifold Theorem (Castillo-Chavez and Song,
2004)) given below.

Theorem 1: The model (20) — (23) does not undergo a backward bifurcation at RT =1 whenever
parameters o; = 0 and € = 0.

Proof:

Let x, =S, X, = E,,x, = I,.,x, = T,. Further, let f = [£,snn £ ] denote the vector field of
(20) — (23). Thus, the model (20) — (23) can be re-written as:
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dx, —A Brxsx,
Y A —HyX,
dt X, +x,+x,+x,

& _ (1_ Py )IBTx3x1 n (1_ PTl)e Brx;x, _ 0, frx;X,

= Xy
dt x +x,+x;+x, x +x,+x,+x, xl+x2+x3+x4g1 ?
dxy _ P Brxsx, " P € frxsx, 0, 8%, %, k
= 82X+ T KX,
dt  x+x,+x;+x, x +x,+x,+x, X +x, +x,+x,
dx € [ .x.x
_4:’])53_ IBT = —HpXys
dt X+ X, +x,+x,
The Jacobian of the transformed system (24) — (27), evaluated at the DFE (£;), is given by
—Hy 0 _ﬂ]: 0
J(g): 0 —& (I_PTl)ﬁ; 0
0 *
0 k, _(PTlﬂT+g2) 0
0 0 h —Hy

396

(24)

(25)
(26)

(27)

Consider the case when Ry = 1. Furthermore, let ﬂT = ﬂ; be the bifurcation parameter. Solving for

~ * 818>
B, fromRy =1 gives B, =, = .
i ! ! g1PT1+k1(1_PT1)

The right eigenvector of J (5 1] is given by

ﬂ7=ﬂ;

T
WZ(Wl’Wz’W3’W4) where
b

81
w=—-—- <0,
1 kl(l_PTl) H
— (l_PTl)ﬂ;i

_gl(PTlﬂ;_gZ)
81
w, =——m—— >0,
! kl(l_PTl)ﬁT

g,

w, = —>0.
! kl(l_PTl)ﬂH:BT

Furthermore, J (é: 11

2

has a left eigenvector, given by

ﬁT:ﬂ;
v = (vq, Uy, V3, V) Where,
k
v =0, v,= — >0
_gl(PTUBT _gz)
vy = L* >0,v, =0

kl (1_ PTl )ﬁT
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It follows from Theorem 4.1 in Castillo-Chavez and Song (2004), if we compute the associated non-
zero partial derivatives of F'(x) (evaluated at the DFE &), that the associated bifurcation

coefficients, aand b, defined by:

a= 24: VWW, asz (00)

G oxo,
and
4 82
b= vw, Ji —2%_(0,0)
k.i=l axa IBT
are computed to be
2v " +
= X*z [~ = Pp) Srw,ws — 0, Brw,wy — (1 PTL)IBTws2 +(Ee-D{A=Py)Brwsw, 1+
) (28)
v * *
x —[- Prlﬂrwzwz +0; IBTw2W3 TlﬂTWSZ +(E-DP, Brwsw,]
1
and
b= (gIPTl +k1(1_PT1)) i+ PTl(gIPTl +kl(l_PT1)) >0

2 2
82 81 klz(l_PTl)
Since the bifurcation coefficient b is positive, it follows from Theorem 4.1 in Castillo-Chavez and

Song (2004) that model (20) — (23), or the transformed model (24) — (27), will undergo a backward
bifurcation if the backward bifurcation coefficient, @, given by (28), is positive.

Setting € = 0 and o, = 0, results in a < 0. Thus, it follows that Theorem 4.1 of Castillo Chavez and
Song (2004) that the model (20) — (23) will not undergo a backward bifurcation if € =0 and

o, = 0. Hence, in the absence of exogenous re-infection (0] = 0) and reinfection of treated

individuals, there will be no backward bifurcation at R = 1; only the DFE will exist when Ry < 1.
Figure 1 shows the bifurcation diagram for the TB-only model (2). Here, we can see the coexistence
of the stable DFE with one stable EEP and an unstable EEP, when Ry < 1.

x10°
9 T T T T T T

Stable EER.

Stable DFE . ) . : |
0 -
0.994 0995 0.996 0.997 0.998 0.999 1 1.001

Figure 1: Backward Bifurcation Diagram for the Model (20) — (23) showing the force of infection A as a
function of the control reproduction number Rr.
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3.2. Dengue-only Model

The dengue only model is derived from system (6) — (19) by setting Er = Ir =Ty = E, = E; =E, =
I, = 0. This leads to the following sub-model:

ds, _

di Ay =HySy— Aoy Sy, (29)
dE
Ttl:ﬂ“DvSH _(7/1+ﬂH)E1’ (30)
dl
7;:71E1_(Tl+:u11+501)11’ €2y
dR,
7;27111_#11131’ (32)
dasv
= Ay - A Sy — 1,8y, (33)
dt
dE
dtv :ﬂ’DHSV _(7v + Uy )Ev’ (34)
dl
7::7VEV_(IUV+5HV)IV’ (35)
with
ﬂ’DV = ﬂVH (UVEV + IV) _ ﬁHV(nAEl'H?BIl'H?CEZ+77DE3+77EE4+77F12), N,=S,+E+I,+R

NH +Aon Ny

and N, =S, +E, +1,.

Consider the region D, = {(SH,El, 13,Ry Sy, Ey, IV)EIR{Z_: Ny < 2—H, Ny < %} Using the approaches
H 14

used in Section 3.1, it can be shown that the set D> is positively invariant and an attractor of all
positive solution of the system (29) — (35). Hence, we claim the following

Lemma 4. The region D; is positively invariant for the system (29) — (35).

Lemma 5. Let the initial data for the model (29) — (35) be Sy (t) > 0, E;(t) > 0,1;(t) > 0,R,(t) >
0,Sy(t) > 0,Ey(t) and I,(t) > 0 then the solution Sy (t), E1(t), I;(t), R1(t), Sy (t), Ey(t),and
I, (t) with positive initial data will remain positive for all time t > 0.

3.2.1. Local stability of disease-free equilibrium (DFE) of the Dengue-only model
The model (29) — (35) has a disease-free equilibrium, obtained by setting the right hand side of the
model to zero, given by

& =S, E I, .R .S, E..I") = (A—H,o,o,o,ﬁ,o,oJ

IUH Iuv
The stability of &, is established using the next generation operator method on the system (29) — (35)
(van den Driessche and Watmough, 2002). Following the procedure, as implemented in Section 3.1.1,
we have that the effective reproduction number is given by
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k)

AHg39adsdelv
where, g, =My + V.8, =T, + My +0p,,85 =Yy + 1y, 8¢ = My + Oy . The next result follows
from Theorem 2 in van den Driessche and Watmough (2002).

R _\/AVﬁHVBVHllH(g4TIA+Y1UB)(}’v+gsflv)
b=

Lemma 6. The DFE of the system (29) — (35) is locally asymptotically stable if Rp< 1 and unstable if
RD> 1.

The threshold quantity Rp is the effective or control reproduction number for the Dengue only sub-
model. The implication of Lemma 6 is that Dengue can be eliminated from the population when Rp <
1 if the initial sizes of the subpopulations of the sub-model are in the region of attraction of &,.

3.2.2. Backward Bifurcation Analysis of the Dengue-only Model

It is instructive to characterize the type of bifurcation model (29) — (35) may undergo. We claim the
following result, with the proof (based on the Centre manifold Theorem (Castillo Chavez and Song,
2004)) given below.

Theorem 2: The model (29) — (35) undergoes backward bifurcation phenomenon at R, = 1 when
S, =0

Proof:

Let x, =S,,x,=E,x;=1,,x, =R, x;=S,,x, =E,,x, =I,.Further, let f =[f,,---, f,]
denote the vector field of the model (29) — (35). Thus, the model (29) — (35) can be written as:

dx, B (77 X, +x )x

DA g Pt TN 36
da " H X +x, +x,+x, (30)
dx, :BVH (77Vx6 +X; )xl

2 —(v + , 37
dt x+x,+x;+x, (94 H ), G
dx

7; =X _(71 + 1y 0, )xs’ (38)
ﬂzfx —l X, (39)
di 1% —H Xy

dx, Bray (1,3, + 17, )x

Hs A, Pav¥ia Vg s 40
dt U x4, X X, Hrs @0
dxg  Buy (77Ax2 + 15X, )xs

e _ ~(y, + : 41
dt X +x,+x,+x, (?’V ,uv)x(, D
dx

_7:ny6_(#V+5HV)'X7’

dt (42)

The Jacobian of the transformed system (36) — (42), evaluated at the DFE, &, , is given by:
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7

—Hy 0 0 0 0 vally T FvH

0 - 0 0 0 Bua B

0 y -g, 0 0 0 0
J(E)=| 0 0 r, —p, O 0 0 ,

0 0 0 0 -y, O 0

0 Brulaxs Boyllyxs 0 0 —&s 0

0 0 0 0 0 v, —g.

Let B,y = By - Suppose B, = By is chosen as the bifurcation parameter at R, = 1, we have that

B = Ay 8:8.8586ky
VH

Ayt (8.1 + 705 0 + 861 )
The right eigenvector of J($3) p,,=p;,1S given by

w:(wl,wz,w3,w4,w5,w6,w7) where,

T ﬁVH'XSIVZ(g477A + 717713)(}/‘/ +7,80) <0,w, =w, > 0,w, = YWy )
x1g4g5g6IuH 84
T +
W, = 1W3’W5 IBVH XsW. ( V)W, = IBVHxswz(g477A 7/1773)
Hy ;uvx1 84 g4g5x1
ﬁVHx57/VW2(g477A +71773)
7=
g4g5g6x1

Furthermore, the Jacobian, J(§2) p,,,=g;,» has aleft eigenvector,
v:(vl,vz,v3,v4,v5,v6,v7) where,
v, =0,v,=v, >0,v;=v; >0,v, =0,v, =0

_ IB;HVZ(ﬂVgﬁ +7) v :BvHﬂBxs (ﬂvgs + 7\/)

6 = V7 =
8586 X/ 848586
It follows from Theorem 4.1 in Castillo Chavez and Song (2004), if we compute the associated non-

zero partial derivatives of F'(x) (evaluated at the DFE &,), that the associated bifurcation

coefficients, a and b defined by

a= Z VW W, —— A —*(0,0),

ki, j=1 a a
and
9’ f,
b= v w—2_(0,0)
;‘lk " dx,0xf,

are computed to be
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a :#[Wg(ﬂmﬁ T Vily +T171)ﬂ511x;(g4 +17)My 86 + )1+
X Hy 848585 A 43)
zvzﬁ\if M 8s+7v) [X;W225017/1 + ﬂsx:%2W§501 . x:ﬂVHx;WZZ(g4 +77371)2]
xf2g5g6 84My gi:uH :qul*gi
and
b= Z,B;ngwz(g4 +157)v 86 + Yy )Wzvzx; >0

84858 6x1*
Since the bifurcation coefficient b is positive, it follows from Theorem 4.1 in Castillo Chavez and
Song (2004) that model (29) — (35), or the transformed model (36) — (42), will undergo a backward
bifurcation if the backward bifurcation coefficient, @, given by (43), is positive.
Setting 0, =0, leads to
- 2V 2 2 *
a= #[Wz Uy &4+ Vilky + T V) Boy Xs (84 +157) Ty 86 + 7 )] —
X1 Hu84858s

2V2:B‘§H My & +7) xl*ﬁVHxiwg(g4 +77371)2

X 8586 HyXx 8,
Thus, it follows that Theorem 4.1 of Castillo Chavez and Song (2004) that the model (29) — (35) will

not undergo a backward bifurcation if 8, =0. Hence, in the absence of disease-induced death in

1<0.

humans, there will be no backward bifurcation in the Dengue-only model at R, = 1; only the DFE
will exist when R, < 1. Figure 2 shows the bifurcation diagram for the Dengue-only model (29) —
(35). Here, we can see the coexistence of the stable DFE with one stable EEP and an unstable EEP,
when Rp < 1.

45 T

251 Stable EEP -

1 -

05 —

StablE = -emm
o lpEE PR — e +----Unsiable EEP ‘ s

L
065 07 075 08 085 09 095 1

RBp

Figure 2: Backward bifurcation diagram for the model (29) — (35) showing the force of infection A, as a
function of the control reproduction number R).

4. ANALYSIS OF FULL MODEL

Consider the region

D = {(Sy, Er, I7, Tr, Ey, Iy, Ry Sy, Ey, Iy, By, E3, Eq, I, )eRY: Ny < 2—:,NV <lv

w
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Using the approaches in Section 3.1, it can be shown that the set D is positively invariant and an
attractor of all positive solution of the system (6) — (19). Hence, we claim the following.

Lemma 7. The region D is positively invariant for the system (6) — (19).

Lemma 8. Let the initial data for the model (6) — (19) be Sy (t) > 0, Ex(t) > 0,1:(t) > 0,Tr(t) > 0,
E (t) > 0,1,(t) > 0,R,(t) >0,5,(t) > 0,E,(t) >0, I,(t) > 0,E,(t) > 0,E5(t) > 0,E.(t) >
0,and I,(t) > 0 then the solution Sy (t), E¢(t), I+ (t), Ty (t), EL(t), [1(t), R1(t), Sy (t),Ey (L),

Iy (t), E;(t), E3(t), E4(t), and I,(t) with positive initial data will remain positive for all time t > 0.

4.1. Local Stability of disease-free equilibrium (DFE) of TB-Dengue Model

The model (6) — (19) has a disease-free equilibrium obtained by setting the right hand side of the

model to zero given by

A A

& = (Si Er, I, T7, BS, I3, RY, S5, By 1, B3 B3, B3 1) = (ﬂ—”,o,o,o.o,o,o.#—v,0,0,0,0,0.0)
H v

The linear stability of &5 is established using the next generation operator method on the system (6) —

(19) (van den Driessche and Watmough, 2002). Following a similar procedure in Section 3.1.1, the

effective reproduction number of the TB-Dengue model (6) — (19) is obtained as Rc = max

{RT,RD},WhereRT = 'BT(glPTl +k1(1_PT1))’

8182
R = \/Avﬁmﬁvﬂﬂﬁ (847, + 77 (7. + g57,)
D 9
Ay 8:848586H,
g =My Tk g =y 1,8 =Y Uy 8 =T My 00,85 =Yy Ty, 86 =My + Oy,
8=V thky 8 =ks + T, +0py + fy 8o =dpy + 1+ Vs H Uy, 810 =T5 1+ 0y Hdipy + 14y,
. A . A
N, =—"%, and S, =—".
Hy Hy
The control reproduction number, associated with the DFE (3) of the model (6) — (19), denoted by

R . The following results follows from Theorem 2 in from van den Driessche and Watmough (2002).
Lemma 9: The DFE, &; of the model (6) — (19) is locally asymptotically stable (LAS) if R <1 and
unstable if R. >1.

and

4.2. Bifurcation Analysis of TB-Dengue Model

It is instructive to characterize the type of bifurcation the complete TB-Dengue model (6) — (19) may
undergo. We claim the following result, with the proof (based on the Centre manifold Theorem
(Castillo Chavez and Song, 2004)) given below.

Theorem 3. The model (6) — (19) does not undergoes backward bifurcation phenomenon at RC =1

whenever o = € = 0.
Proof: Let

x=Sy.x,=E,,x;=1,,x, =T, ,x;=E ,x,=1,x,=R,x, =S,,x, =E ,

Xo=1,,x,=E),x, =E;,x;=E,,x,=1,
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Further, let fA = [ s frseeos fia ]T denote the vector field of the model (6) — (19). Thus, the model (6) —
(19) can be re-written as:

ﬂ A — By (xa T X 11Xy )x1 _ Bou (nvxg X )x3
=Dy

Uy X,, (44)
dt N, N, Hui
& _ (1 — P )ﬁr (x3 T X5 T Xy )xl " (1 - P )e By (x3 T X5 T 10Xy )x4
dt N, N,
o.fr (xa T X 110Xy )xz By (ﬂvxg X )xz P, By (xa T X T Xy )x7
- 81X T + TTyX5;3,
Ny Ny Ny
(45)
% _ P fr (x3 T X 10Xy )xl n b€ fBr (xa T X T Xy )x4 —gx
dt N, N, i
" 0.5 (x3 T 1% 11Xy )xz _ B (ﬂv'x‘) X )x3 " (1 - Py )IBT (x3 T 1% Y Xy )x7
Ny Ny Ny
T3y T Xy,
(46)
ﬂ =rx, _€ By (xs T X3 Y% )x4 — g%, - By (ﬂvx9 + Xy )x4 47)
Ny Ny
ﬁ _ B (ﬂvx9 + X )xl " Bou (nvxg X )x4 g X 1y, — By (x3 T X T Xy )xs
dt N, N, e N, ’
(48)
dx B (o5 +750%5 + 170X, )X
Do = yx, —goxg — 208 Tt Tlnate e o, o (49)
dt N,
dx B (xy +17,, x5 +1,,x,, )x
7;271)%_/”11%_ T\X3 Tl]vlil r2%14 /%7 (50)
ﬂ A, - B, (ﬂAxs T7pXs +11.Xg +T]p Xy T T X3 +1]p Xy )xs — X, (51)
dt N,
dx, _ B, (77Ax5 T NpXe T11.Xg +Tp Xy T X3 1 p Xy )xx
— = —g5Xy, (52)
dt N,
dx,,
—— =Y, Xy — &6X10> (53)
r VX9 = 86Xio
dx,, _ B (Wg + X )xz _ Py Br (x3 + 71X T Xy )xs —gox, - 0,p; (x3 T 1% Xy )xn
dt N, N, T N, ’

(54)
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dx,, _ Py, Br (x3 T 11X F Xy )x() _ _ o:fr (x3 F 1% T Xy )xlz
=7x, t 8sX12 (55)
dt N, N,
dx, _ (1_ PDI) T(x3 + X3 H Xy )xs + By (ﬂv'x9 + X )xs n
dt N N
H H (56)
kX, — oy + 0,5, (xs T 71X T 10Xy )xu
Ny
dx =P, )8, (xy+7,,x, +7,,%, )X
14 — D2 T 3 T17%13 T2"14 6 _ gloxm + k3x12 + }/3)(13 +
dt N, , (57
o.p; (x3 T X3 TN Xy )x12
NH
where,

g =My +k g =My +dy 1,8 =0 1,8, =T Uy +5ngs =7, tH,.8,=H,
+0u &1 =Vt hy Uy 8y = ks + T, + 0, iy 8o =dpy + 1+ Y Ly, 810 =T 1+ 0,
+dT3 +/’lH andNH =x1 +.x2 +x3 +.x4 +x5 +x6 +x7 +x11 +x12 +x13 +x14

The Jacobian of the transformed system (44) — (57), evaluated at the DFE (&3), is given by:

-u, 0 -5, 0 0 0 0 0 0 0 0 0 -q  —q,

0 -8 ¢ 0 0 0 0 0 0 0 0 0 q,+7, g5

0 k, qs— 8,0 0 0 0 0 0 0 0 0 q, q, +7,

0 0 % -4, 0 0 0 0 0 0 0 0 0 0

0 0 By O -g, O 0 0 g5 0 0 0 A 0

0 0 0 0 % -g, 0 0 0 0 0 0 0 %

0 0 0 0 0 7, -u, 0 0 0 0 0 0 0
J(&)= ' !

0 0 0 0 —4y g, 0 —H, ¢, 0 0 43 ~Y9u s

0 0 0 0 G 40 0 79,-80 0 95 Qs Gs

0 0 0 0 0 0 0 0 Y -g 0 0 0 0

0 0 0 0 0 0 0 0 0 0 -g, 0 0 0

0 0 0 0 0 0 0 0 0 0 Vs -g, 0 0

0 0 0 0 0 0 0 0 0 0 ) 0 -g, O

10 0 0 0 0 0 0 0 0 0 0 k, A -8

where,

q1 = B, 91 = PriT2 q3 = (1 — Pry)Pr, qs = (1 = Pry)Br0r1,
qs = (1 = Pr)Brnr2, 96 = Pr1Br, 97 = N11PriBr, a8 = Nr2PriBr,

* * *
_ _ NaPuvxs _ MpBuvxs _ NcPuvxs
99 = NvBvu, qio = — = qu1 = ——= Q2 = —
X1 X1 X1
* * *
_ NpBrvxg _ NgBuvXg _ NrBuvXg
13 = — = dis = ——= qis = ——~

"
X1 X1 X1
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Consider the case when R, > R, and R, =1. Furthermore, let B, = ,3; be a bifurcation

parameter. Solving for g, from Ry = 1 gives

* 818>
ﬁ :ﬁ = .
! ! gIPT1+k1(1_PT1)

The right eigenvector of J(§3) ‘ 55 is given by

T
W:(WI’WZ’WS’W4’WS’W6’W7’Ws’w‘)’Wl()’Wll’WIZ’WIS’WM)

> where,
w (1-p,)Bw nw w oW
IZIBT 3,w2= 1 )Br 3,w3=w3>0,w4= i 3,W5:ﬁvH 3’W6: B 3
Hy 81 Hy 83 8384
.Y, By W
_O”iPwWs _ _ _ _ _ _ _
wy; = Wy = Wy, = Wi, = Wy, = Wy, = W3, =Wy, =0
My 8:84

Furthermore, the Jacobian, J(&3) ‘ bpr has a left eigenvectors, given by

V:(Vlavz’v3av4’V5’V6’V7’VsaV9’V10’V11’V12’V13’V14)

, where,
VISV, =V =V =V, =g =1 =y, =0,
_ kv,
v, = 2,
81
v, =v, >0,

V3(glg9k37273 +g8k2(g10k1‘[2 + g1737’-3)+(k1(1_PT1)+ g1PT1)
(g9k3 Y, + 85k, (81077T1 + Vs ))IB;)

v, = ,

81878389810
_ k3v3(8173 +(k1(1_PT1)+g1PT1)77T2ﬁ;)

. 8185810 ’

v, = Vs (gl()kITZ + 870+ (kl (1_ PT1)+ 8P )(glonn + Vallrs )ﬂ;)’
8189810

v, = V3(8173 +(k1(1_PT1)+ 8P ))7712:3; ‘

81810

It follows from Theorem 4.1 in Castillo Chavez and Song (2004), if we compute the associated non-
zero partial derivatives of F'(x) (evaluated at the DFE &;), that the associated bifurcation

coefficients, aand b, defined by

4 02
a= z VWW; ﬁ (0,0),

ki j=1
and

9> f
b=>» v,w,—%_(0,0
k,,z_l ki axiaxﬁT( )
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are computed to be

2k1V3(1_PT1)W22g2 [ g20-1;u11(1+g1) trelo 2k1V3W32g2(1_PT1)
( oA

a:
AH(g1PT1+k1(1_PT1)) gIPT1+k1(1_PT1)) H(g1PT1+kl(1_PT1))
ﬂH+’i+ﬁleuH+ (l_PTl)gZﬂH +;/lﬂv2H77vﬂH+Tl7/lﬁV2H+;/lﬁVHﬂH+Tl;/lﬁVH:|
83 gIPT1+k1(l_PT1) 818384 818384 8384 8384
20, w2 1-P.)g? P
_ W [( Tl)gzglgl 1My + P, 8.8, +
AH(gIPT1+k1(1_PT1)) gIPT1+k1(1_PT1) (58)
},IPTlglg2+Tl}/lﬂvHPT1glg2 +:BvHPT1/UHg182 (1+£ﬂ
8384 83 84
_ 2v,ws 1, B0, My _ 2wS 1B, ks vs (71 128> )Pm:UH 818>

Ay 88, AHg3g6g8g10(g1PT1 +k1(1_PT1))
2W32:8vHV3PDuUH82(81g9k37273 + g5k, (gl()leZ + g17373)+
(kl(l_PT1)+ 8P )(g9k3}/2 + g5k, (g1o77T1 + V3, ))82)

2
AHg3g9g10(glPTl +kl(1_PT1)) 8s
_ 2W32:B\»Hvs(gmk172 877+ (gl()ﬂTl A EUED) )8182)(1_ Pry )lqung )
AHg3g9g1()(g1PT1 +k1(1_PT1))

and
k\1-P
bzvs"/‘;sﬂﬁ[ 1( T1)+PT1:|‘
H 81

Since the bifurcation coefficient b is positive, it follows from Theorem 4.1 in Castillo Chavez and
Song (2004) that the TB-Dengue model (6) — (19), or the transformed model (44) — (57), will undergo
a backward bifurcation if the backward bifurcation coefficient, a, given by (58), is positive.

Thus, it follows from Theorem 4.1 of Castillo Chavez and Song (2004) that the model (6) — (19) does

not undergoes a backward bifurcation phenomenon at R. =1, if R, > R

,» whenever o, == 0.

This implies that if TB is driving the co-endemicity of both diseases, then the system (6) — (19) will
not under the backward bifurcation phenomenon when there are no cases of exogenous re-infection
and individuals treated for tuberculosis do not get re-infected.

5. CONCLUSION

In this work, backward bifurcation analysis was carried out on a mathematical model for the
population dynamics of TB-Dengue coinfection in a population where both diseases are endemic. The
results show that the effective reproduction number, though necessary for disease control, may not be
sufficient for producing robust public health control strategies for effective control of both diseases if
certain parameters are not effectively monitored. We observe that incidences of TB exogenous
reinfection as well as cases where previously treated individuals gets re-infected with TB can cause a
backward bifurcation in the system. In the case of Dengue, incidences of disease-induced deaths can
lead to a backward bifurcation in the system, hereby making it difficult to control the disease. It was
also observed that, when the TB burden is higher than that for Dengue in the population, then



407
J. Andrawus et al. / Nigerian Research Journal of Engineering and Environmental Sciences
2(2) 2017 pp. 390-407

exogenous reinfection of latently infected individuals and reinfection of previously treated individuals
will also lead to a backward bifurcation. Hence, public health policies must take into consideration
these important parameters when planning health control measures in a population where TB and
dengue are endemic.
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